

Study of Inclusive Decay $\overline{D}^{0} \rightarrow K^{0}_{S}X$

Indian Institute Of Science Education And Research Mohali

Neetesh Mudgal, Vishal Bhardwaj, Karim Trabelsi

XXVI DAE-BRNS High Energy Physics Symposium 2024 Banaras Hindu University,(BHU)

Study Of Inclusive Decay $\overline{D}{}^0 \rightarrow K^0_S X$

- Tension in the $R(D^{(*)})$ measurements
- First measurement of R(X) in Belle II
- Introduction
- Analysis
- Fitting procedure
- K^0_S yield using the sPlot
- Summary

Motivation

- > Lepton flavour universality (LFU) is a fundamental symmetry of the Standard Model.
- ➢ Any violation of LFU is thus a clear indication of new physics.
- > To probe this, physics community has shown interest in the semileptonic B-decays
- → and measured an observable $R(D^{(*)})$ in different experiments.
- ➤ The obervable $R(D^{(*)})$ is defined as

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* l \nu_l)} \quad ; l = e, \mu$$

This has been measured by BaBar, Belle, LHCb, Belle II and gives a combine result of nearly 3σ tension with the SM

> [†]SM prediction $R(D) = 0.298 \pm 0.004$ $R(D^*) = 0.254 \pm 0.005$

[†]World average $R(D) = 0.356 \pm 0.026 \pm 0.014$ $R(D^*) = 0.284 \pm 0.010 \pm 0.010$

First measurement of R(X) in Belle II

→ There is inlcusive way to adress LFU using the the observable R(X). *X* is hadronic final state that originate mostly from $b \rightarrow c\tau \nu$.

$$R(X) = \frac{B(B \to X \tau \nu_{\tau})}{B(B \to X l \nu_l)} ; l = e, \mu$$

- Belle II has obtained the first measurement for the tau-to-light-lepton ratio of inclusive semileptonic B-meson using 189 fb⁻¹ data that is R(X).
- ➤ This result is in agreement with the standard model.

$R(X) = 0.228 \pm 0.016 \pm 0.036$ ‡.Belle II Collaboration Phys. Rev. Lett. 132, 211804	*Some of statistical and systematic uncertainti		
	source	e (%)	
SM prediction, $R(X) = 0.223 \pm 0.005$	Experimental sample size	8.8	
	Lepton identification	2.8	
Muslem Rahimia and K. Keri Vosb, J. High Energy Phys. 11 (2022) 007	$X l \nu$ branching fractions	7.0	

As X includes charm hadrons D, D^*, D^{**} that decay in to the channel containing the leptons, pions, kaons, which can be misidentified.

12.0 5.2 10.0

- Secondary decay of X are source of background, responsible to increase the uncertainty(systematic) in *X*l ν branching fraction.
- > There is a way to improve the systematics uncertainty by studying the inclusive decay of \overline{D}^0 .
- For this we are doing the analysis to find the branching fraction of inclusive decay mode $\overline{D}{}^0 \rightarrow K^0_S X(anything)$.
- > This will be first time measurement in Belle II.

Introduction

- At SuperKEKB e^+e^- is collided and produce the $\Upsilon(4S)$ resonance that decays into $B^+B^-(B^0\overline{B}^0)$ pairs. For our inclusive study, hadronic B-tagging is used to tag one $B(B^-)$ and other (B^+) is in signal side.
- > One of the daughters of signal side B^+ is π^+ . Then using the kinematic information of $B_{tag}(B^-)$ and π^+ , we find the mass spectrum of recoil part that is M_{recoil} .

SuperKEKB and Belle II

Analysis

- ▶ Inclusive study of $\overline{D}{}^{0} \rightarrow K^{0}_{S}$ 🗙 using the hadronic B-tagging.
- ▶ One of $B(B^{-})$ is reconstructed through pre-defined hadron decays.
- ▶ For this analysis, 400 fb⁻¹ generic Monte-Carlo sample is used.
- Solution Using the kinematics information of B_{tag}^- and π^+ , recoil mass (M_{recoil}) is reconstructed in the centre of mass frame of $\Upsilon(4S)$.
- Signal peaks are in the lower mass spectrum region and for having stable fit in further analysis, mass range of recoil [1.4, 2.3] GeV/c² is chosen.
- → There are four components: Two signal peaks ($\overline{D}{}^{0}\pi^{+}$ and $\overline{D}{}^{*0}\pi^{+}$), continuum background and contribution from partially reconstructed $B \rightarrow D^{(*)}\rho$ decays

 $M_{recoil} = [(\Delta E)^2 - ((\Delta p_x)^2 + (\Delta p_y)^2 + (\Delta p_z)^2)c^2]^{1/2}$ ΔE = Energy difference of B_{tag} and π^+ Δp_i = Difference in spatial momentum for B_{tag} and π^+

Fitting Procedure:

- Fitting plots for the signal and background extracted from mass spectrum of recoil.
- ▶ Both of the signals $\overline{D}{}^{0}\pi^{+}$ and $\overline{D}{}^{*0}\pi^{+}$ are of similar shape hence both the signals are defined by common pdfs (**Gaussian+Crystal ball**).
- ➢ For Continuum background **Exponential** pdf is used.
- → Background coming from partialy reconstructed $D^{(*)}\rho$ decay, is fitted by **double gaussian** pdf.
- > After extraction of signal and background, total fitting of M_{recoil} is done.

Fitting and *K*[®] **yield using** sPlot

- In total fitting we fixed all tail parameters for the signal pdf (Gaussian + Crystal ball) except the mean, and for the background we floated the slope(lambda) parameter of the exponential pdfs.
- A fudge factor parameter (f_CB) is included in order to account for possible MC-Data difference.
- After extracting the yield of all signals from spectrum of M_{recoil} , we find the yield of K_S^0 in range $1.4 < M_{recoil} < 2.3 \text{ GeV/c}^2$.
- ▶ Yield of K_S^0 is extracted from the signal \overline{D}^0 using sPlot technique.
- > In sPlot technique weights are assigned to all the events, then using these weights yield of K_S^0 is estimated in signal region.

Yield of $\overline{D}{}^{0}\pi^{+}(sig1) = 16899\pm487$ Yield of $\overline{D}{}^{0*}\pi^{+}(sig2) = 18095\pm342$ Yield of continuum background(**ebkg**)=96084\pm4401 Yield of higher $D^{(*)}\rho$ decays(**sig3**)=9753\pm8434

After scaling up to 400 fb⁻¹ total no. Of $K_{s}^{0} = 4474 \pm 150$

Conclusion: Branching fraction of $\overline{D}^0 \rightarrow K_S^0 X = 0.330 \pm 0.011$, Which has 3% statistical uncertainty with Belle II only.

Summary

- \succ We did the inclusive study of $\overline{D}{}^0 \rightarrow K_S^{\otimes}X$ decay mode using the 400 fb⁻¹.
- > In this we use the hadronic B tagging and B^+ decay is considered in signal side.
- > Than using the kinematics information of B_{tag}^- we find the signal of $\overline{D}{}^0\pi^+$ channel which further in to $K_S^0 X$ decays.
- After this we use the *sPlot* technique to extract the yield of K_s^0 that is following the $\overline{D}^0 \rightarrow K_s^0 X$.
- ≻ Calculate the branching fraction of $\overline{D}{}^0 \rightarrow K^0_S X$.
- \succ Further we will validate this result by using the generated level information of K_S^0 .
- \succ We will do the branching fraction calculation in bin of the K_S^0 momentum .

Pre-Selection cut

The following are the pre-selection cuts for FEI (tag-side), and signal side M_{recoil} reconstruction. These are the standard FEI cuts those are recommended.

B-tag side cuts:

- $M_{bc} > 5.27 \, GeV/c^2$
- $-0.15 < |\Delta E| < 0.1 \, GeV$
- FEI signal probability > 0.001

Selection of pion cuts:

- $|dr| < 1 \, cm$ and $|dz| < 3 \, cm$
- $L_{K/\pi} < 0.9$ and muonID < 0.9 and electronID < 0.9

Best Candidate Selection:

- Highest FEI signal probability
- The highest π momentum in CMS frame

Definition of B_{tag}'s ROE mask:

- Track : $|dr| < 2 \, cm, |dz| < 4 \, cm, p_t > 0.2 \, GeV/c$ thetaInCDCAcceptance
- ECL : $E > 0.008 \, GeV$, $0.03 \, GeV$, $0.06 \, GeV$ in front, barrel and end-cap regions, respectively.|clusterTiming| < 200, $clusterNhits > 1.5 \, and \, 0.2967 < clusterTheta < 2.6180$

M_{recoil} Cut:

- After B-tagging : $1.4 < M_{recoil} < 3.0 \text{ GeV/}c^2$
- For selecting the signal $\,:\,1.4 < M_{\rm recoil} < 2.3~GeV/c^2$

K⁰_s Cut:

• A list of K_s^0 is filled which is made up of $\pi^+\pi^-$ with the with the mass cut on K_s^0 (0.47,0.52) GeV/c²