Multiplicity and Rapidity Dependent Study of (Multi)-strange Hadrons in Small Collision System using the STAR Detector

Ishu Aggarwal (for the STAR Collaboration) Panjab University, Chandigarh - India

Outline

- Motivation
- Overview of STAR Detector
- Dataset and Analysis Technique
- Results
- Summary

Supported in part by :

Office of Science

Motivation I : Strangeness as a Probe for Deconfinement

Creation of QGP in smaller systems is still under intense debate

 Strangeness measurements in d+Au can bridge the multiplicity gap between peripheral A+A and p+p

We want to look for strangeness enhancement for K_s^0 , Λ , Ξ , Ω in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Motivation II : Probing Cold Nuclear Matter Effects

Measurements of particle type and centrality dependence of R_{dAu} (p_T) may help us to understand the mechanism behind Cronin effect

 Hint of Cronin like enhancement has been observed at intermediate p_T for pions as well as for protons

•For $2 < p_T < 5$ GeV/c, R_{dAu} of proton is higher than for pion

Motivation II : Probing Cold Nuclear Matter Effects

Rapidity Asymmetry :

$$Y_{Asym}(p_T) = \frac{\frac{d^2N}{(dp_T dy)_{-b < y < -a}}}{\frac{d^2N}{(dp_T dy)_{a < y < b}}}$$

Au going side - backward rapidity *d* going side - forward rapidity

 Rapidity Asymmetry provides unique tool to study contributions from nuclear effects (nuclear shadowing, multiple scattering etc.) to the particle production

A solid understanding in cold nuclear matter effects is essential to distill the potential QGP signal

Overview of STAR Detector

https://www.osti.gov/servlets/purl/1477969

- The Solenoidal Tracker At RHIC, known as STAR, tracks the thousands of particles produced by heavyion collisions at RHIC
- STAR detector is used to study the signatures of the Quark Gluon Plasma (QGP) formation
- Time Projection Chamber (TPC) is the main detector used for the analysis

Centrality is estimated by calculating number of charged tracks ($|\eta| < 0.9$) in d+Au 200 GeV and comparing it to the Glauber model simulations

Dataset and Particle Identification

- •Year : 2016
- •Events analyzed ~100M
- •Particles studied : K^0_s , Λ , Ξ & Ω

 $K_s^0, \Lambda, \Xi, \Omega$ are reconstructed via their hadronic decay channels :

Chin. Phys. C 40, 100001 (2016)

Transverse Momentum Spectra at Mid-rapidity (|y| < 0.5)

• p_T spectra of K_s^0 , $\Lambda(\bar{\Lambda})$, $\Xi^-(\bar{\Xi}^+) \& \Omega^-(\bar{\Omega}^+)$ are corrected for acceptance & efficiency and respective branching ratios

^ Λ spectra are corrected for weak decay feed down from Ξ

Integrated yields and $\left< p_T \right>$ as function of Multiplicity

- $^{\rm O}$ dN/dy increases as function of ${\rm dN_{ch}}/{\rm d\eta}$
- ° $\langle p_T \rangle$ is larger for heavier particles & hint of increase is observed as function of $dN_{ch}/d\eta$:
 - Supports the picture of collective evolution (radial flow)
- Particle production is driven by $dN_{ch}/d\eta$ not by collision species.

STAR : Phys. Rev. C **75**, 064901 (2007) STAR : Phys. Rev. Lett. 108, 072301 (2012) STAR : Phys. Rev. C 79, 034909 (2009) STAR : Phys. Rev. C 83, 034910 (2011)

- Smooth transition of ratios of the particles from p+p to A+A collisions
- d+Au system fills the gap
 between p+p and peripheral
 Cu+Cu & Au+Au collisions
- Data from different collision systems follow similar trend
- Yield ratio of particles to pions with more strangeness content decrease faster from high to low multiplicity

Strangeness Enhancement

- Strange particle yields in d+Au 200 GeV are enhanced as compared to p+p collisions
- $\circ~$ Strange particle yields increase as a function of $\langle N_{part} \rangle$

STAR : Phys. Rev. C (2007) : **75**, 064901 STAR : Phys. Rev. Lett. (2012) : 108, 072301 STAR : Phys. Rev. C (2009) : 79, 034909

A data points are p_T shifted by 0.1 GeV/c for clarity.

π,K,p data are from STAR : Phys.Lett.B (2006) : 637 STAR : Phys.Lett.B (2005) : 616

$$R_{dAu}(p_T) = \frac{\text{Yield}_{AB}}{\langle N_{\text{coll}} \rangle \text{Yield}_{pp}}$$

- \circ Cronin like enhancement is observed for $K^0_s,$ A & Ξ at intermediate p_T
- Enhancement in d+Au compared to p+p for p_T in 2-4 GeV/c is stronger for baryons (Ξ, Λ & p) compared to mesons (K⁰_s, π)

Integrated yields and $\left< p_T \right>$ as function of Rapidity

^o dN/dy slightly decreases from negative to positive rapidities for K_s^0 , $\Lambda(\bar{\Lambda}) \& \Xi^-(\bar{\Xi}^+)$ ^o $\langle p_T \rangle$ is flat vs y for K_s^0 , $\Lambda(\bar{\Lambda}) \& \Xi^-(\bar{\Xi}^+)$: similar radial flow

• Theoretical calculations are welcome

 $Y_{\rm asym}(p_{\rm T}) = \frac{{\rm d}^2 N(p_{\rm T})/{\rm d}y_{\rm CM} {\rm d}p_{\rm T}}{{\rm d}^2 N(p_{\rm T})/{\rm d}y_{\rm CM} {\rm d}p_{\rm T}}|_{y_{\rm CM} \in [-b, -a]}}{{\rm d}^2 N(p_{\rm T})/{\rm d}y_{\rm CM} {\rm d}p_{\rm T}}|_{y_{\rm CM} \in [a, b]}}.$

- $Y_{Asym} > 1$ is observed at low p_T
 - Signifies the presence of nuclear effects
- Consistent with unity at high p_{T} .
- Asymmetry is more prominent for
 - Higher rapidity intervals (0.4 < |y| < 0.8)
 - Heavier mass particle

Summary

- STAR
- ° We have presented Multiplicity and Rapidity dependent studies of K_s^0 , Λ , Ξ and Ω in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- Particle production is independent of collision system and mainly driven by multiplicity
- ^o Yields of K_s^0 , $\Lambda(\overline{\Lambda})$, $\Xi^-(\overline{\Xi}^+) \& \Omega^-(\overline{\Omega}^+)$ in d+Au are observed to be higher than in p+p collisions at 200 GeV : **Strangeness enhancement**
- ^o Nuclear modification factors (R_{dAu}) for K_s^0 , Λ and Ξ show Cronin like enhancement
- Integrated yield as function of rapidity decreases from negative to positive rapidity region while $\langle p_T \rangle$ remains flat.
- $^{\rm o}$ Rapidity asymmetry for K^0_s, Λ and Ξ is observed
 - At low p_T : indicating presence of nuclear effects
 - Asymmetry is more pronounced for higher rapidity region and for heavier mass particle

BACK UP

Ishu Aggarwal

Probing Cold Nuclear Matter Effects in CMS

Rapidity Asymmetry Studied in CMS :

 $Y_{\text{asym}}(p_{\text{T}}) = \frac{d^2 N(p_{\text{T}})/dy_{\text{CM}} dp_{\text{T}}|_{y_{\text{CM}} \in [-b, -a]}}{d^2 N(p_{\text{T}})/dy_{\text{CM}} dp_{\text{T}}|_{y_{\text{CM}} \in [a, b]}}.$

- $Y_{asym} > 1$ is observed at low p_T
 - Signifies the presence of nuclear effects
- Consistent with unity at high p_T
- More prominent for higher rapidity interval (1.3 < |y| < 1.8)
- Asymmetry is stronger for Λ as compared to that for K^0_{s}

Transverse Momentum Spectra at Different Rapidities

° p_T spectra of K_s^0 , $\Lambda(\bar{\Lambda})$, $\Xi^-(\bar{\Xi}^+)$ for different rapidities are corrected by acceptance & efficiency and respective branching ratios

Transverse Momentum Spectra at Different Rapidities

5

6

3

5

6

2

° p_T spectra of K_s^0 , $\Lambda(\bar{\Lambda})$, $\Xi^-(\bar{\Xi}^+)$ for different rapidities are corrected by acceptance & efficiency and respective branching ratios

3

р_т (GeV/*c*)

Δ

2

10

10

 10^{-6}

 10^{-8}

 10^{-10}

10⁻¹²

 10^{-2}

 10^{-4}

10⁻⁶

 10^{-8}

 10^{-10}

10⁻¹²

3

2

6

5

(d²N)/(2πp_Tdp_Tdp_Tdy) (GeV/*c*)⁻²