XXVI DAE-BRNS High Energy Physics Symposium 2024

Contribution ID: 211

Type: Oral

Neutrino Phenomenology in Scoto-Seesaw mechanism with Modular A₄ Symmetry

In this work, we study a hybrid scoto-seesaw mechanism based on modular A_4 symmetry, which has many interesting phenomenological implications. In this scoto-seesaw framework, the type-I seesaw mechanism generates the atmospheric mass square difference $(\Delta m_{\rm atm}^2)$ at the tree level. Additionally, the scotogenic contribution plays a crucial role in obtaining the other mass square difference $(\Delta m_{\rm sol}^2)$ at loop level, providing a clear understanding of the two distinct mass square differences observed in neutrino oscillations. The non-trivial transformations of Yukawa couplings under the A_4 modular symmetry facilitate the exploration of neutrino phenomenology, offering a specific flavor structure for the mass matrix. This model not only makes predictions regarding neutrino mass ordering, mixing angles, and CP phases, but it also yields precise predictions for Σm_i as well as $|m_{ee}|$. Specifically, the model predicts Σm_i within the range of (0.073, 0.097) eV and $|m_{ee}|$ in (3.15, 6.66)×10⁻³ eV. Furthermore, our model shows promise in addressing lepton flavor violations, such as $l_{\alpha} \to l_{\beta}\gamma$, $l_{\alpha} \to 3l_{\beta}$, all while remaining consistent with current experimental limits.

Field of contribution

Theory

Author: KUMAR, Ranjeet (IISER Bhopal)

Co-authors: MISHRA, Priya; SRIVASTAVA, Rahul (Indian Institute of Science Education and Research - Bhopal); MOHANTA, Rukmani; BEHERA, mitesh

Presenter: KUMAR, Ranjeet (IISER Bhopal)

Track Classification: Beyond the standard model