## A search for light Higgs in CMS

<u>Anirban Bala</u><sup>[1]</sup>, Rajdeep Mohan Chatterjee<sup>[1]</sup>, Monoranjan Guchait<sup>[1]</sup>, Gobinda Majumder<sup>[1]</sup>, Soumya Mukherjee<sup>[2]</sup>

<sup>[1]</sup> Department of High Energy Physics, Tata Institute of Fundamental Research <sup>[2]</sup> University of San Diego

On behalf of CMS collaboration

DAE-BRNS HEP symposium, 19-23 Dec 2024

Banaras Hindu University, Varanasi







### Motivation

- SM Higgs discovery ≻ precision measurement.
- But  $H \rightarrow$  invisible not ruled out; constrained to be  $\leq 8\%$ . [link]
- Two Higgs doublet model (2HDM) with an additional Higgs singlet contains total 7 Higgses.
  - $\circ \qquad 3 \text{ are CP even } (H_1, H_2, H_3)$
  - 2 are CP odd  $(A_1, A_2)$
  - 2 are charged Higgs  $(H^{\pm})$

#### Among the CP even Higgs, either $H_1$ or $H_2$ can be SM like.

- In supersymmetry, next-to-minimal supersymmetric standard model (NMSSM) is one such model.
- The lightest  $H_1/A_1$  can be also lighter than  $H_2$  in a certain region of model parameter space. If  $H_1/A_1$  be dominantly singlet like, then  $H_1/A_1 \rightarrow \gamma\gamma$  branching ratio can be very high (upto ~80%) in certain region of parameter spaces. [Monoranjan Guchait, Jacky Kumar, <u>arXiv: 1608.05693</u>]
- For such a scenario light Higgs bosons can be produced through SM like Higgs production.









### Analyzing 'VH' production mode

- Full Run 2 (137 fb<sup>-1</sup>) analysis is based on the VH (V=W/Z) production mode using leptonic trigger.
- Targeting  $H \rightarrow AA \rightarrow bb\gamma\gamma$  (20 GeV <  $M_A$  < 60 GeV) in the VH production mode
- The analysis is optimized assuming Br (H  $\rightarrow$  AA) = 10%; Br (A  $\rightarrow$  bb) = Br (A  $\rightarrow \gamma\gamma$ ) = 50%
- Final states are: one (two) triggered lepton (s) coming from W (Z) along with two b-jets and two photons.



| Signal MC            | X-sec (pb) |
|----------------------|------------|
| WH/ZH                | 0.01/0.003 |
| Bkg MC               | X-sec (pb) |
| tt (semi lepton)     | 365.34     |
| tt (dilepton)        | 88.29      |
| tt + $\gamma$ + jets | 4.078      |
| DY + jets            | 5343.25    |









### Trigger & object selection



 $\rightarrow$  Additionally, the angular separation between any two final state objects,  $\Delta R$  (obj1,obj2) > 0.4

→ Events are vetoed with additional leptons with loose-id, to make the WH channel orthogonal with the ZH channel.





### Introducing a discriminating variable ' $\chi^2$ '



- $\chi^2$  distribution is concentrated near zero for the signal points whereas for bkg it is quite wide.
- We can use this variable to efficiently select our SR.
- This " $\chi^2$ " variable will be used later for background estimation.





### Signal region optimization



• We have defined our signal region (SR) :  $\chi^2 \le 1$  and control region (CR) :  $\chi^2 > 3$  (Signal contamination ~0.12%).





### **BDT for WH channel**

- Signal mass points: 'A' mass 20-60 GeV in the interval of 5 GeV.
- Different types of BDT training are possible:
  - With all the signal points together (20 + 25 + 30 + ... + 60)
  - With two consecutive signal points together  $(20 + 25, 25 + 30, \dots, 55 + 60)$
  - With each signal point separately (20, 25, 30, ... , 60)
  - "Parametric" BDT (where "mass" is treated as an input parameter)
    - The samples corresponding to all signal mass points are merged. For the signal, an extra input feature is added which is the "true mass" that the signal event belongs to.
    - For the MC background events, an extra input feature is added which can take any random discrete value from the list of available signal mass points.
    - Boundary optimization is done independently for each signal mass point.
    - Interpolation strategy: For those mass points where MC signal samples are not available, the efficiency x acceptance & the boundaries are taken from the nearest mass point where samples are available.
- Any input feature for which the correlation with respect to  $M_A$  is > 10% is not used in the BDT training
- Input features:
  - Total 19 variables considered for training





### **BDT** input features

Lepton ( $e/\mu$ )  $\circ p_{T}, \eta$ b-jets  $\circ$   $\eta$  of leading and sub-leading b-jet  $p_{T}^{\text{leading b}}/M_{\text{bb}}, p_{T}^{\text{sub-leading b}}/M_{\text{bb}}$ 0 Identification score of leading and sub-leading b-jet Ο We are dividing the  $p_{T}$  of leading and No. of jets sub-leading b-jets (photons) by M<sub>bb</sub> Photons  $(M_{yy})$  just to decorrelate the variables •  $\eta$  of leading and sub-leading  $\gamma$ with M<sub>4</sub>.  $p_{T}^{\text{leading }\gamma}/M_{\gamma\gamma}, p_{T}^{\text{sub-leading }\gamma}/M_{\gamma\gamma}$ 0 Identification score of leading and sub-leading  $\gamma$ Ο Multi-object features  $\Delta \varphi_{\gamma\gamma}, \Delta \varphi_{\rm bb}, \Delta \varphi_{\rm (bb)(\gamma\gamma)}, \Delta \varphi_{(\gamma\gamma)(\rm MET)}$ 





### Signal-background separation and ROC



### **Event categorization**

- ➢ Event categorization based on BDT.
- Categorized into two dimensional phase spaces.

Private Work (CMS Simulation) 137 fb<sup>-1</sup> (13 TeV)



#### > 2D phase space

- Two boundaries
- Here the constraints are: the second boundary should be always left to the first one & at least seven background events in each category
- SR1, SR2 and CR defined by  $\chi^2$  and BDT
- $\circ \qquad \text{SR1} > \chi^2 \le 1; \text{BDT} \ge 0.89$
- SR2 >  $\chi^2 \le 1; 0.77 \le BDT < 0.89$
- CR >  $\chi^2 > 3$ ; BDT < 0.77

Formal boundary optimization has been done by a 2D "grid search" method.





### Signal modeling

- Parametric signal modeling constructed by fitting all the signal mass points (20-60 GeV) simultaneously.
- Modeling is done using sum of Gaussians (upto 5).
- Here sum of 3 gaussians is used for WH channel and sum of 2 gaussians is used for ZH channel. (using  $\chi^2$ /ndf gof figure of merit) •



Private Work (CMS Simulation) 137 fb<sup>-1</sup> (13 TeV)



### Overview of background estimation

#### The background estimation is done using the "envelope" method developed for the <u> $H \rightarrow \gamma\gamma$ analysis</u>.

In the standard  $H \rightarrow \gamma \gamma$  analysis, the bkg shape is a falling distribution between 100 - 180 GeV. SR is between 115 - 135 and the remaining part is the sideband region. But for our case, we have a peaking bkg distribution between 15-70 GeV, also we do not have any lower sideband region. Currently our analysis is blinded.

(1) Define a control region using  $\chi^2$  and BDT.

(2) Propagate shape of  $M_{\gamma\gamma}$  from CR to SR.

(3) Correlation of  $M_{\gamma\gamma}$  with  $\chi^2$  and BDT was checked.







### Background modeling (data driven)







### Likelihood analysis



- Main role of this statistical analysis is to create a likelihood that can be used further to extract the exclusion limit.
- Here, we can reparametrize the likelihood in terms of ' $\mu$ ' which is  $\mu = s/\lambda_s$  as we want the signal strength ( $\mu$ ) as our parameter of interest (POI).



More is <u>here</u>.







### Summary

- This analysis is being explored for the first time in CMS.
- This search channel is motivated by NMSSM. We are targeting a phase space where  $A \rightarrow \gamma \gamma$  branching ratio is very high (due to singlet nature) along with the significant  $A \rightarrow$  bb decay mode to probe this channel.
- The main challenges of this analysis are two folds.
  - For Run-2, non availability of the diphoton trigger to target the 'ggH' production mode for this analysis.
  - The background structure is peaking instead of falling.
- Future stages:
  - For Run-3 this kind of analysis can be extended as for those triggers the diphoton invariant mass cut is not there. Also for 2018 era (Run-2), the diphoton invariant mass cut is absent.
  - Similar searches can be possible in Run-3, the strategy may be almost similar to this.











 $M_A = 20 \text{ GeV}$ 







 $M_A = 40 \text{ GeV}$ 







 $M_A = 60 \text{ GeV}$ 







 $\sigma_{_{bb}}$  and  $\sigma_{_{bb\gamma\gamma}}$  as a function of  $\rm M_{_A}$ 



Figure 6: In the upper plot we are showing that  $\sigma_{bb}$  gradually increases with  $M_A$  whereas  $\sigma_{bb\gamma\gamma}$  is almost independent of  $M_A$ .



<sup>23</sup>

### Boundary optimization by 2D grid search (WH)

| M <sub>A</sub> | Left boundary | Sig. events | Bkg. events | Significance | Right<br>boundary | Sig. events | Bkg. events | Significance | Total<br>significance |
|----------------|---------------|-------------|-------------|--------------|-------------------|-------------|-------------|--------------|-----------------------|
| 20             | 0.81          | 1.91        | 20.25       | 0.41         | 0.91              | 3.86        | 11.86       | 1.06         | 1.14                  |
| 25             | 0.81          | 2.59        | 20.25       | 0.56         | 0.91              | 5.27        | 11.86       | 1.43         | 1.54                  |
| 30             | 0.79          | 3.37        | 24.17       | 0.67         | 0.91              | 5.59        | 11.86       | 1.51         | 1.65                  |
| 35             | 0.77          | 2.83        | 28.70       | 0.52         | 0.91              | 8.33        | 11.86       | 2.19         | 2.25                  |
| 40             | 0.77          | 3.21        | 28.70       | 0.59         | 0.91              | 7.59        | 11.86       | 2.01         | 2.10                  |
| 45             | 0.77          | 3.79        | 28.70       | 0.69         | 0.91              | 5.91        | 11.86       | 1.59         | 1.74                  |
| 50             | 0.79          | 2.79        | 24.17       | 0.55         | 0.91              | 8.57        | 11.86       | 2.25         | 2.32                  |
| 55             | 0.79          | 2.99        | 24.17       | 0.59         | 0.91              | 7.92        | 11.86       | 2.09         | 2.18                  |
| 60 GO          | 0.77          | 4.01        | 25.44       | 0.77         | 0.89              | 4.70        | 15.12       | 1.15         | 1.39                  |

### Separation of input variables for signal & background







### Background modeling (data driven)



Ctifr 26

### Systematic uncertainties

Table 18: The shape and yield uncertainties.





# Impact plot



## $M_A = 40 \text{ GeV}$







### Outline

#### > Motivation

- Some recent searches for "light" Higgs in CMS
- > Analysis strategy
  - BDT based for WH channel
  - Cut based for ZH channel
- ➤ Statistical analysis
  - Parametric signal modeling
  - Data driven background modeling (by "envelope" method)
  - Systematic uncertainties
  - Expected results
- ≻ Summary





## Statistical analysis

- Parametric signal modeling
- Data driven background estimation using "envelope" method
  - Unlike in the standard model  $H \rightarrow \gamma \gamma$  analysis we have a CR in place of a sideband region
- Systematic uncertainties
- Expected result
- Impact plot