

XXVI DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2024

From Microquasars to AGNs: An uniform Jet Variability

Ajay Sharma

Senior Research Fellow (Department of Physics of Complex Systems) S.N. Bose National Centre For Basic Sciences

- * Objective
- * What are Microquasars and Active Galactic Nuclei?
- * Why is investigation of gamma rays so important?
- * Methods
- * Results
- * Conclusion
- * Acknowledgement

The variability study of AGN and Microquasars using multi wavelength data is a powerful tool to:

*Probe their structure and physical processes.

*Understand accretion physics and jet dynamics.

*Test relativistic effects near compact objects.

*Estimate black hole masses and study cosmic AGN evolution.

By observing variability across different timescales and wavelengths, we gain critical insights into the nature of microquasars and AGNs, their environments, and their role in the universe.

Long-term PG 1553+113 MW. lightcurves

H. Abe et al. 2024

What is Microquasar?

বিয়ানন দাওঁতম্বান্য থাঁ

Spinning compact object

Companion Star

SNBNCBS Ajay Sharma | slide 6

- *Microquasar: A binary system composed of compact object (either BH (~ 5 15 M_{\odot}) or neutron star) and a companion star
- *Form an accretion disk due to accumulation of matter from companion star
- ***Relativistic Jets:** Outflows of relativistic particles, extend to parsec distances, responsible for emission across whole EM spectrum.
- *Variability: exhibit variability across whole wavelengths with timescale ranging from seconds to days, even months

What are the Galaxies?

বিয়ানন দাইৎজ্যান্য থা

SNBNCBS, Ajay Sharma | slide 8

	▼				
Normal Galaxy	Active Galaxy				
It has a dormant SMBH at its center which is not accreting matter from it surroundings	Active supermassive black hole at the center of galaxy, accreting matter from its surrounding due to its high gravitational field.				

Active galactic nuclei (AGN)

NRAO

- * AGN's are powered by the Accretion on to
 SMBH
- Highly energetic manifestations from the nuclei of galaxies, emits a prodigious amount of radiation in the form of radio, optical, x-rays, γ
 -rays and high-speed particle jet.
- * AGN's are the most luminous persistent sources of electromagnetic radiation in the universe.
- * The luminosity of the AGN is typically $L_{AGN} \simeq 10^{13} L_{\odot} \simeq 4 \times 10^{46} ergs^{-1}$
- * AGN's with the highest observed luminosities are expected to have BH masses of up to

 $M_{BH} \sim 10^9 - 10^{10} M_{\odot}$

SNBNCBS, Ajay Sharma | slide 10

Basic components of AGN

AGN Classification

বিয়ানন দাইতম্বান্ধ থাঁ

AGN Unification Scheme

Based on the orientation angle of AGN's with respect to the observer

Beckmann et al. 2012

SNBNCBS, Ajay Sharma | slide 13

Similarities b/w Microquasars and AGNs

Property	Microquasar	AGN					
Power Source	Stellar-mass black hole or neutron star	Supermassive black hole at the center of galaxy					
Accretion Disk	Forms from the binary companion star	Forms from surrounding galactic material					
Relativistic Jets	Extends up to few light-year distances, emit from radio to VHE gamma-rays, even more higher	Up to millions of light-year distances, emit radiation from radio to VHE gamma-rays, cosmic-rays, neutrinos					
Emission process	Thermal radiation: Accretion disk, companion star Non-thermal radiation: From Relativistic jets via synchrotron, inverse-compton processes	Thermal radiation: Accretion disk, BLR, NLR, Dusty torus Non-thermal radiation: From Relativistic jets via synchrotron, inverse-compton processes					
Variability timescale	Seconds to months	Days to years					

NOLLVN BOOR IN

Source of information

Fermi Gamma-ray space based telescope

* Launched by NASA in 2008
* Energy coverage : from few keV upto 300GeV
* Scanning whole the sky in every 3 hours

Large Area Telescope (LAT)

- FoV: 2.5 sr
- Energy range: below 100MeV upto 300GeV

Let's discuss about variability

There are several different methods that can be used to investigate the temporal behaviour, such as

- Fractional Variability study
- Structure function
- Power spectral density analysis
- Gaussian Process modeling

Gaussian Process Modelling

Gaussian process model is CARMA(p, q), defined as the solutions to the following stochastic differential equation:

$$\frac{d^{p}y(t)}{dt^{p}} + \alpha_{p-1}\frac{d^{p-1}y(t)}{dt^{p-1}} + \dots + \alpha_{0}y(t) = \beta_{q}\frac{d^{q}\epsilon(t)}{dt^{q}} + \beta_{q-1}\frac{d^{q-1}\epsilon(t)}{dt^{q-1}} + \dots + \beta_{0}\epsilon(t)$$

Damped Random Walk (DRW)

Let's set p=1, q=0, i.e. a CAR(1) model, Damped Random Walk model, and also known as Ornstein-Uhlenbeck process, stochastic differential has following form :

 $\left[\frac{d}{dt} + \frac{1}{\tau_{DRW}}\right] y(t) = \sigma_{DRW} \epsilon(t) \quad \text{Where, } \tau_{DRW} \text{ the damping timescale of DRW process,}$

 σ_{DRW} the amplitude of random perturbations.

DRW Kernel: $k\left(t_i, t_j\right) = \sigma^2 \exp\left(-\frac{t_i - t_j}{\tau}\right),$

 σ , τ amplitude and damping timescale

• PSD form for the DRW process:

$$S(\omega) = \sqrt{\frac{2}{\pi}} \frac{a}{c} \frac{1}{1 + \left(\frac{\omega}{c}\right)^2}$$
, where, $a = 2\sigma_{DRW}^2$ and $c = \frac{1}{\tau_{DRW}}$

NBNCBS, Ajay Sharma | slide 18

From Microquasars to AGNs: Variability study

- ★ In this investigation, we studied 13 sources, including 7 blazars, 1 radio galaxy, 1 narrow line seyfert 1 galaxy, 2 unclassified blazar candidates, and 2 microquasars.
- * In this study, we used gamma-ray data taken by Fermi-LAT satellite.
- * Duration of observation is ~ 15 years

* DRW modeled 7-day binned gamma-ray lightcurve of blazar S2 0109+22

- Source type: BL lac
- Gal. Coord. : (129.142, -39.878)
- Redshift : 0.265

* DRW power spectral density (PSD) profile and marginal posterior parameter distribution (MCMC) :-

SNBNCBS, Ajay Sharma | slide 21

* Modelled gamma-ray light curves of blazars:

* Marginal posterior parameter distributions of blazars:-

SNBNCBS, Ajay Sharma | slide 23

* DRW PSD profiles of blazars :-

* Modelled gamma-ray light curves of non-blazers and microquasars:

* Marginal posterior parameter distributions of non-blazers and microquasars:

SNBNCBS, Ajay Sharma | slide 26

* DRW PSD profiles of non-blazers and microquasars:

Results

TABLE I. This table provides detailed information on 11 Active Galactic Nuclei (AGNs)—including blazars (BL Lac or FSRQ), radio galaxy (RG), narrow-line Seyfert 1 galaxies (NLS1), and blazar candidates of unclassified type (BCU)—and 2 microquasars.

Source ^a	4FGL name ^b R.A. ^c I	Dec. ^c Sourced type	$\langle cadence \rangle^{e}$ (days)	$\begin{array}{c} \text{Baseline}^{\text{f}} \\ (\text{days}) \end{array}$	$z^{ m g}$	$\delta_D^{\mathbf{h}}$	\log^{1} (M/M_{\odot})	$\ln \sigma_{DRW}$ $\ln \tau_{DRW}$ (days)	$\log_{10} \tau_{rest}^{\mathbf{k}}$	Normal D μ^{l}	Distribution Fi σ ¹	itting KS-test ^m	Reference $z \delta_D$	ences M _{BH}
											-	(p-value)		64.2.497007
S2 0109+22	J0112.1+224518.024322	2.7441 BLL	8.81	~ 5642	0.36	2.59	$8.6{\pm}0.43$	$-0.38^{+0.15}_{-0.12} 5.26^{+0.33}_{-0.26}$	$3 2.67^{+0.14}_{-0.11}$	$0.032{\pm}0.027$	$0.26{\pm}0.022$	1.0	(1) (2)	(3)
PKS 0735+17	J0738.1+1742114.53117	7.7053 BLL	10.58	~ 5621	0.424	4.5	$8.4{\pm}0.42$	$-0.42^{+0.19}_{-0.14} 5.52^{+0.40}_{-0.30}$	$3.39^{+0.18}_{-0.13}$	$0.033 {\pm} 0.019$	$0.21 {\pm} 0.015$	0.98	(4) (5)	(4)
B2 1215+30	J1217.9+3007184.467 30	0.1168 BLL	8.47	~ 5628	0.13	1.1	8.12 ± 0.41	$-0.54^{+0.19}_{-0.14}5.55^{+0.42}_{-0.32}$	$\frac{2}{2}$ 3.54 $^{+0.18}_{-0.15}$	$0.0422 {\pm} 0.025$	$0.311 {\pm} 0.020$	0.92	(6) (5)	(7)
B3 1343+451	J1345.5+4453206.38844	.8832 FSRQ	13.59	~ 5586	2.534	12.6	$8.98 {\pm} 0.99$	$-0.32^{+0.16}_{-0.12} 5.30^{+0.34}_{-0.22}$	$\frac{1}{7}$ 2.85 $^{+0.15}_{-0.12}$	-0.0002 ± 0.007	$0.09{\pm}0.006$	0.989	(8) (9)	(10)
S4 1726+45	J1727.4+4530261.865 4	5.511 FSRQ	20.81	~ 5621	0.717	13.48	8.22 ± 0.411	$-0.42^{+0.15}_{-0.12} 5.14^{+0.35}_{-0.32}$	$3.11^{+0.16}_{-0.13}$	-0.006 ± 0.009	$0.144{\pm}0.007$	0.66	(11) (9)	(12)
S5 1803+78	J1800.6+7828 270.19 78	8.4678 BLL	8.40	~ 5642	0.68	5.97	$8.6{\pm}0.43$	$-0.04^{+0.06}_{-0.06} 3.69^{+0.14}_{-0.13}$	$\frac{4}{3}$ 2.53 $^{+0.10}_{-0.08}$	-0.008 ± 0.0007	0.033 ± 0.0005	0.167	(13)(13)) (14)
PKS 2052-47	J2056.2-4714 314.068-47	7.2466 FSRQ	11.83	~ 5481	1.49	17.1	$7.88 {\pm} 0.39$	$-0.29^{+0.11}_{-0.09} 4.58^{+0.23}_{-0.20}$	$3 2.83^{+0.10}_{-0.09}$	-0.011 ± 0.007	$0.10 {\pm} 0.006$	0.299	(15)(15)) (16)
PKS B0027-024	J0030.6-0212 7.6326 -2	.1989 BCU	26.78	~ 3696	1.804	10.3	$8.19 {\pm} 0.57$	$-0.45^{+0.15}_{-0.13} 4.55^{+0.42}_{-0.36}$	$2 2.64^{+0.18}_{-0.16}$	-0.006 ± 0.020	$0.168 {\pm} 0.017$	0.786	(17) (9)	(18)
NGC 1275	J0319.8+413049.950741	.5117 RG	7.20	$\sim\!5495$ (0.0176	5 1.4	$7.2{\pm}0.44$	$-0.48^{+0.12}_{-0.10} 4.88^{+0.26}_{-0.22}$	$\frac{5}{2}$ 2.25 $^{+0.12}_{-0.09}$	$0.004 {\pm} 0.003$	$0.108 {\pm} 0.002$	0.98	(20)(20)) (20)
PMN J0401-2034	J0401.9-2034 60.4696-20	0.5861 BCU	27.17	~ 3479	1.647	13.1	$8.19 {\pm} 0.57$	$-1.26^{+0.19}_{-0.18} 4.46^{+1.04}_{-0.82}$	$\frac{1}{2}$ 2.62 $^{+0.45}_{-0.36}$	-0.042 ± 0.024	$0.215{\pm}0.02$	0.73	(19) (9)	(18)
PMN J0948+0022	2 J0948.9+0022 147.239 0.	.3737 NLS1	17.11	~ 5042 ().5846	52.7	7.22 ± 0.32	$-0.40^{+0.15}_{-0.12} 5.05^{+0.38}_{-0.32}$	$2.50^{+0.17}_{-0.13}$	-0.025 ± 0.009	$0.116 {\pm} 0.007$	0.786	(21)(27)) (21)
Cyg X-3	J2032.6+4053 308.107 40).9577 Microquasa	r 55.31	~ 5642	0.003	1.78	$0.38 {\pm} 0.26$	$-0.31^{+0.11}_{-0.10} 4.24^{+0.29}_{-0.20}$	$\frac{9}{5}$ 1.83 $^{+0.12}_{-0.11}$	$0.003 {\pm} 0.005$	$0.035 {\pm} 0.004$	0.351	(22)(25)) (23)
LS I+61 303	J0240.5+611340.131961	.2293 Microquasa	r 7.13	~ 5620 (0.0013	81.78	$0.6{\pm}0.2$	$-0.28^{+0.21}_{-0.15} 5.66^{+0.42}_{-0.30}$	$2.45^{+0.18}_{-0.13}$	-0.001 ± 0.007	$0.263 {\pm} 0.006$	0.999	(24)(25)) (26)
References: (1) Collaboration et al. (2018), (2) Fan et al. (2013), (3) Zhang et al. (2023a), (4) Chai et al. (2012), (5) Liodakis et al. (2017a), (6) Furniss et al. (2019), (7) Valverde et al.														
(2020), (8) Sahakyan et al. (2020), (9) Chen (2018), (10) Zhang et al. (2024b), (11) Costamante et al. (2018), (12) Xiong and Zhang (2014), (13) Ghisellini et al. (2010), (14) Lin et al.														
(2017), (15) Wang et al. (2022), (16) Kadowaki et al. (2015), (17) Peña-Herazo et al. (2021), (18) Xiao et al. (2022), (19) https://ned.ipac.caltech.edu (20) Zhang et al. (2022),														
(21)Xin et al. (2022), (22)Koljonen and Tomsick (2020), (23)Zdziarski et al. (2013), (24)https://simbad.u-strasbg.fr/simbad/sim-fbasic (25)Molina et al. (2019), (26)Massi														
$et \ al.$ (2017), (27)Doi $et \ al.$ (2019).														

^a Source Name

^b 4FGL Name

^c Source Right Ascension (R.A.) and Declination (Dec.)

- ^d Source from different classes
- ^e Mean cadence in days
- ^f Duration of the light curve in days
- ^g Redshift
- ^h Doppler factor
- ⁱ Logarithm of Black Hole Mass
- ^j Posterior parameters of modeling the Lightcurves with the DRW process
- ^k Logarithm of damping timescale in the rest frame (days)
- ¹ Parameters of the Normal distribution fitted to the residuals
- ^m Kolmogorov–Smirnov (KS) Test result

Results

- * In Burke et al. 2021, using optical data a strong correlation was observed in terms of the relation $\tau_{damping} M_{BH}$ and the correlation parameter is sufficiently well constrained to provide BH mass estimates using optical variability.
- * In Zhang et al. 2022,2024 + Sharma et al. 2024, observed damping timescale for AGN using gamma-rays, occupy the same space as optical timescale obtained from accretion disk. This implies that the jet variability is somehow connected with accretion variability.

Results

- * In this study, the observed gamma-ray variability timescale of AGNs occupy the same space as optical variability, but in case of microquasars, the observed gamma-ray damping timescale do not follow the $\tau_{damping} M_{BH}$ relation.
- *The observed damping timescale of microquasars is comparable with AGNs damping timescales. This study hints at a new perspective that the relativistic jets' properties or their production mechanisms may be independent of the black hole mass.

Conclusion

- Our findings indicate that the observed characteristic variability timescales for both AGNs and microquasars are remarkably similar, irrespective of their black hole masses.
- Finite This suggests that common underlying processes may be responsible for the observed variations in γ -ray emissions across these sources.
- The same variability time scale in stellar black holes and supermassive black holes suggests the jet possibly can be produced by a similar procedure.

Acknowledgement

I would like to thank Prof. Debanjan Bose and Prof. Raj Prince for their guidance throughout these project and to Prof. Sakuntala Chatterjee for providing the essential support needed to complete the project. **To know more Scan me**

Thank you