

P → < E → < E → E</p>
December 21. 2024

1/24

Parallel talk for DAE BRNS conference (reg. id: 382)

Probing Neutrino Mass Ordering with Supernova Neutrinos in NO ν A with Active-Active vs. Active-Sterile Scenarios

Based on the paper; hep-ph 2412.05213

Papia Panda University of Hyderabad

Motivation of the work

- To show mass ordering sensitivity of the supernova neutrinos by detailed statistical analysis in currently running neutrino experiment; NOvA.
- To provide a study of active-active and active-sterile mixing frameworks → supernova neutrinos can be used to realize the existence of sterile neutrinos.
- Interactions among active neutrinos → active-active framework interactions involving sterile neutrinos → active-sterile framework.
- To see the effect of different types of systematics on mass ordering sensitivity.
- To see the effect of energy smearing on mass ordering sensitivity.

What is supernova neutrino?

- The core of a massive star with a mass greater than 8M_☉, where M_☉ is the mass of the sun, collapses with a tremendous amount of energy and light at the end of its life, producing a "core-collapse supernova".
- Approximately 99% of this energy is carried away by neutrinos of various types, and their weakly interacting nature provides valuable insights into the supernova explosion mechanism.

A D b 4 A b

Why supernova neutrinos?

- Neutrinos produced in the supernova reach earth before the optical photons: neutrinos from SN1987A come out nearly 2.5 hours prior to photons.
- Help to know about supernova evolution, black hole and neutron star formation.
- Improve the understanding of neutrino physics.

Supernova neutrinos to understand sterile neutrino existence

- In this study, we assume that sterile neutrinos are produced during neutrino oscillations occurring in the region between the core and the surface of the supernova.
- In our calculations, we have considered only the Mikheyev-Smirnov-Wolfenstein (MSW) effect.

Garching parametrization (ECSN model)

- We have taken Garching electron-capture supernova model (ECSN).
- Flavor dependent primary neutrino spectra can be parametrized by,

$$\Phi_{\nu}(E_{\nu}) = \mathcal{N}\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} e^{-(\alpha+1)\frac{E}{\langle E_{\nu} \rangle}} , \qquad (1)$$

• \mathcal{N} is the normalisation constant with the expression,

$$\mathcal{N} = \frac{(\alpha+1)^{\alpha+1}}{\langle E_{\nu} \rangle \Gamma(\alpha+1)} \,. \tag{2}$$

• The neutrino flux (F_{ν}^{0}) at neutrinosphere,

$$F_{\nu}^{0} = \frac{L_{\nu}}{\langle E \rangle_{\nu}} \Phi_{\nu}(E_{\nu}) .$$
⁽³⁾

▶ < ≥ > < ≥ >
December 21. 2024

Fluences

Fluence (integrated flux over time) as a function of neutrino energy (E_{ν}) in GeV. Left (right) of upper row is for $\nu_{e}(\bar{\nu}_{e})$ while left (right) of lower panel is for $\nu_{x}(\bar{\nu}_{x})$ flavour. In each panel, color code is given in the legend.

• Flux expressions in active-active scenario,

$$F_{\nu_{e}} = pF_{\nu_{e}}^{0} + (1-p)F_{\nu_{x}}^{0}$$

$$F_{\bar{\nu}_{e}} = \bar{p}F_{\bar{\nu}_{e}}^{0} + (1-\bar{p})F_{\bar{\nu}_{x}}^{0}$$

$$2F_{\nu_{x}} = (1-p)F_{\nu_{e}}^{0} + (1+p)F_{\nu_{x}}^{0}$$

$$2F_{\bar{\nu}_{x}} = (1-\bar{p})F_{\bar{\nu}_{e}}^{0} + (1+\bar{p})F_{\bar{\nu}_{x}}^{0},$$
(4)

• Flux expressions in active-sterile framework,

$$\begin{aligned} F_{\nu_{e}} &= a_{ee}F_{\nu_{e}}^{0} + a_{ex}F_{\nu_{x}}^{0} + a_{es}F_{\nu_{s}}^{0} \\ F_{\bar{\nu}_{e}} &= b_{ee}F_{\bar{\nu}_{e}}^{0} + b_{ex}F_{\bar{\nu}_{x}}^{0} + b_{es}F_{\bar{\nu}_{s}}^{0} \\ 2F_{\nu_{x}} &= (a_{\mu e} + a_{\tau e})F_{\nu_{e}}^{0} + (a_{\mu x} + a_{\tau x})F_{\nu_{x}}^{0} + (a_{\mu s} + a_{\tau s})F_{\nu_{s}}^{0} \\ 2F_{\bar{\nu}_{x}} &= (b_{\mu e} + b_{\tau e})F_{\bar{\nu}_{e}}^{0} + (b_{\mu x} + b_{\tau x})F_{\bar{\nu}_{x}}^{0} + (b_{\mu s} + b_{\tau s})F_{\bar{\nu}_{s}}^{0} \\ F_{\nu_{s}} &= a_{se}F_{\nu_{e}}^{0} + a_{sx}F_{\nu_{x}}^{0} + a_{ss}F_{\nu_{s}}^{0} \\ F_{\bar{\nu}_{s}} &= b_{se}F_{\bar{\nu}_{e}}^{0} + b_{sx}F_{\bar{\nu}_{x}}^{0} + b_{ss}F_{\bar{\nu}_{s}}^{0}, \end{aligned}$$
(5)

Hierarchy	р	p
Normal	$\sin^2 \theta_{13}$	$\cos^2 \theta_{12} \cos^2 \theta_{13}$
Inverted	$\sin^2 \theta_{12} \cos^2 \theta_{13}$	$\sin^2 \theta_{13}$

In active-active neutrino framework, survival probability expressions of neutrino (p) and antineutrino (\bar{p}) fluxes for two cases: normal hierarchy (NH) and inverted hierarchy (IH).

Hierarchy	$a_{lpha e}$	$a_{lpha x}$	$b_{lpha m{ heta}}$	$b_{lpha x}$	
Normal	$ U_{\alpha 4} ^2$	$ U_{\alpha 1} ^2 + U_{\alpha 2} ^2$	$ U_{\alpha 1} ^2$	$ U_{\alpha 2} ^2 + U_{\alpha 3} ^2$	
Inverted	$ U_{\alpha 4} ^2$	$ U_{\alpha 1} ^2 + U_{\alpha 3} ^2$	$ U_{\alpha 3} ^2$	$ U_{\alpha 1} ^2 + U_{\alpha 2} ^2$	

In the active-sterile neutrino framework, the expressions for the couplings of neutrinos $(a_{\alpha e}, a_{\alpha x})$ and anti-neutrino $(b_{\alpha e}, b_{\alpha x})$ are provided for two scenarios; normal hierarchy (NH) and inverted hierarchy (IH).

> December 21, 2024

9/24

Different values of oscillation probabilities in normal and inverted hierarchy scenario \rightarrow results of non-zero mass hierarchy sensitivity.

Experimental setup

- NOvA (NuMI Off-axis Appearance) experiment is a currently ongoing long-baseline accelerator neutrino experiment.
- Material of far detector; mainly ${}^{12}C$, fiducial volume \rightarrow 14 kilotons.

Parameters	Values		
θ_{12}	33.41°		
θ_{13}	8.58°		
θ_{23}	42.20°		
θ_{14}	5°		
Δm_{21}^2	$7.410 imes 10^{-5} { m eV^2}$		
Δm_{31}^2	$\pm 2.507 imes 10^{-3} \mathrm{eV^2}$		
Δm_{41}^2	1 e <i>V</i> 2		

Neutrino oscillation parameter values used in the study.

A 10

A B > A B >

December 21, 2024

-

Simulation details

- For our simulations, we use the Supernova Neutrino Observatories with GLoBES (SNOwGLoBES) software.
- This tool is specifically designed to study supernova neutrinos. SNOwGLoBES calculates event rates by utilizing input parameters such as neutrino fluxes, cross sections, and detector configurations.
- ۰ For calculating mass hierarchy sensitivity, Poisson log-likelihood statistical formula is,

$$\chi_{\text{stat}}^2 = 2 \sum_{i=1}^{n} \left[N_i^{\text{test}} - N_i^{\text{true}} - N_i^{\text{true}} \log\left(\frac{N_i^{\text{test}}}{N_i^{\text{true}}}\right) \right], \tag{6}$$

(ロ) (同) (E) (E) (E) (C) December 21, 2024

Main channels

Channel	Framework: $3\nu/(3+1)\nu$	Hierarchy	Event Number	
Channel (i) (IBD)	3ν	NH	129665	
		IH	133128	
	$(3+1)\nu$	NH	128679	
		IH	132117	
Channel (ii) $(\bar{\nu}_e - C^{12})$	3ν	NH	3856.54	
		IH	4411.67	
	$(3+1)\nu$	NH	3827.24	
		IH	4378.15	
Channel (iii) ($\nu_e - C^{12}$)	3ν	NH	3809.95	
		IH	2996.25	
	$(3+1)\nu$	NH	3767.84	
		IH	2713.18	
Channel (iv) ($\nu_e - e$)	3ν	NH	1123.14	
		IH	1178.39	
	$(3+1)\nu$	NH	1095.48	
		IH	791.09	

Event numbers for different channels (Channel (i), Channel (ii), Channel (iii), and Channel (iv)) at a supernova distance of 1 kpc. NH (normal hierarchy) and IH (inverted hierarchy) represent the mass hierarchy, while $3\nu [(3 + 1)\nu]$ represents the active-active [active-sterile] neutrino framework.

NC channels

Scenario	NH/IH	$\nu_{e} - {}^{12}C$	$\bar{\nu}_e - {}^{12}C$	$ u_{\mu}$ $-^{12}$ C	$ar{ u}_{\mu} - {}^{12} C$	$ u_{ au} - {}^{12}C$	$ar{ u}_{ au}$ $-^{12}$ C	Total NC
3ν	NH	2274.80	2019.66	1533.19	2242.18	1533.19	2242.18	11845.21
	IH	1838.70	2300.71	1751.24	2101.66	1751.24	2101.66	11845.21
$(3+1)\nu$	NH	2247.06	2004.31	1180.84	2242.18	1180.84	2242.18	11097.41
	IH	1618.02	2283.22	1497.76	2101.66	1497.76	2101.66	11100.08

The event rates for six types of neutral current channels at a supernova distance of 1 kpc for different mass hierarchy cases: NH and IH. 3ν [(3 + 1) ν] represents the active-active [active-sterile] neutrino framework.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Event rates

Event rate in active-active and active-sterile frameworks for five different channels for supernova at a distance of 1 kpc. Color codes are given in the legend. NH (IH) represents the normal (inverted) hierarchy.

Mass hierarchy sensitivity

Mass ordering sensitivity as a function of supernova distance (in kpc). Color code are given in the legends.

Conclusion I

- The primary channel of NOνA can distinguish normal mass hierarchy from inverted mass hierarchy at 5σ confidence level for a supernova explosion occurring at a distance of 5 kpc.
- Observation of the NC channel alone can differentiate between the presence and absence of sterile neutrinos.
- Mass hierarchy sensitivity is more in active-stelle framework than active-active scenario.

Effect of systematics

٠ The test event rate including normalisation and energy calibration error is expressed as

$$N_i^{\text{test}} \to N_i^{\text{test}}[(1+a) + b(E_i' - \bar{E}')/(E_{\text{max}}' - E_{\text{min}}')],$$
 (7)

- $a, b \rightarrow$ the nuisance parameters corresponding to the normalization and energy calibration errors.
- For a 5% systematic error in both types, the nuisance parameters a and b can be expressed in terms of the pull variables p_1 and p_2 as

$$a = 0.05 p_1, \quad b = 0.05 p_2.$$
 (8)

Finally, in presence of systematics errors, the final expression of sensitivity is,

$$\chi^2_{\text{stat+sys}} = \chi^2_{\text{stat}} + p_1^2 + p_2^2 .$$
(9)

(ロ) (同) (E) (E) (E) (C) December 21, 2024

Effect of systematics

Left : Mass hierarchy sensitivity as a function of supernova distance (in kpc) for main channel in different systematics uncertainty conditions; "norm" ("shape") stands for normalization (energy calibration) error. Right: mass hierarchy sensitivity with respect to systematic error.

< ロ > < 同 > < 回 > < 回 > :

December 21, 2024

ELE DOG

Conclusion II

- Presence of systematic error decreases the mass hierarchy sensitivity.
- Among normalisation error and energy calibration error, the deterioration of the sensitivity is mostly dominated by the normalisation error.
- As systematic uncertainty increases from 0% to 30%, the sensitivity decreases from 25σ to 12σ for the primary IBD channel.

Effect of smearing

- Energy of the neutrinos will be reconstructed by measuring the energy and momentum of the outgoing leptons.
- In our analysis, we incorporate this effect by the inclusion of energy resolution.
- Because of this energy resolution, the neutrino events will be smeared around its true energy causing a loss of information.

Event rate for active-active framework as a function of neutrino energy (GeV) for all the main channels and NC. Similar nature has been shown for active-sterile scenario also. Here sm [no-sm] refers to the terms with [without] smearing matrix. Color codes are given in the legend of each panel.

> (ロ) (同) (E) (E) (E) (C) December 21, 2024

Conclusion III

- For channels (i), (ii), and (iii), the event rate spectra remain similar in shape but shift leftward due to energy smearing, as the smearing reduces the reconstructed energy of events.
- For channel (iv), energy smearing modifies the shape of the event rate spectrum.
- For the NC channel, the spectrum becomes more compact with energy smearing, whereas, without smearing, the spectrum is more widely spread.

Mass hierarchy sensitivity as a function of supernova distance (in kpc) with [without] smearing matrix condition for all the channels. Here sm [no-sm] refers to the terms with [without] smearing matrix. Color codes are given in the legend of each panel.

Conclusion

- Work presents a detailed analysis of mass hierarchy sensitivity using supernova neutrinos within the active-active and active-sterile frameworks, focusing on the context of the NOvA experiment.
- The study incorporates the impact of sterile neutrinos on mass hierarchy sensitivity.
- The study shows mass hierarchy sensitivity as a function of supernova distance for both active-active and active-sterile scenarios. Primary channel of NOνA can distinguish normal mass hierarchy from inverted mass hierarchy at 5σ confidence level for a supernova explosion occurring at a distance of 5 kpc.
- Considering NC channel, although active-active scenario is blind on hierarchy conditions, there is a non-zero mass hierarchy sensitivity in active-sterile framework.
- In the presence of energy smearing, the sensitivity expected to become worse as compared to the sensitivity without energy smearing.

Backup Slides

< 글 > < 글 > ∃ = < < = > < < < < <

25/24

December 21, 2024

What is Garching model

- $8.8M_{\odot}$ electron-capture supernova is simulated in spherical symmetry framework.
- The sperical symmetry framework has been used throughout the supernova evolution to complete deleptonization of the forming neutron star.

Possible backgounds for supernova neutrinos

- For Galactic supernova burst, the rate of backgrounds in current and future experiments are very low.
- Background for supernova neutrinos can come from radioactivity, cosmic ray, reactor ν
 _e, solar ν_e etc.
- Even some of the backgrounds can come from low energy atmospheric neutrinos and antineutrinos.
- Fortunately, most of these can be suppressed by taking the detector underground.

Collective effect

 $H = H_V + H_{coll} + H_{MSW}$

• Collective effects: $\nu \rightarrow \nu$ NC forword scattering

Why we don't take collective effect

- Collective effects is an active area of research and their effect on neutrino flavour conversions are yet to be understood fully.
- A full multi-angle study of neutrino self-interactions showed that the energy dependent modifications of the spectrum would get smeared out when considering the post-bounce time integrated spectrum and corrections are expected to be small.