Silicon Sensor Module Assembly at TIFR for the CMS Experiments

<u>Kameswara Rao</u>, Gagan Mohanty, Irfan Mirza, Lokesh Bhatt, Mukund Shelke, Prashant, Simon Periera, Sukant Mayekar, Thomas

(on behalf of the CMS HGCAL collaboration) Dept of High Energy Physics TIFR, Mumbai

> DAE-BRNS High Energy Physics Symposium BHU, Varanasi December 19-23,2024

[Shilpi Jain's Talk]

Instantaneous Luminosity: 2.5 x $10^{34} \text{ s}^{-1} \text{cm}^{-2}$ -> 5 - 7.5 x $10^{34} \text{ s}^{-1} \text{ cm}^{-2}$ Pile-up events: O (80) -> O(140-200) Radiation background $10^{14} n_{eq}/\text{cm}^{-2}$ → $1 - 1.5 \times 10^{16} n_{eq} \text{cm}^{-2}$

More radiation, more pileup, higher density of tracks, more data..... CMS detector will be upgraded to cope up with new the challenges

Calorimetry

• Replacement of the endcap calorimeters with a high-granularity calorimeter (HGCAL)

CE-E (Electromagnetic) Active: Silicon Passive: Cu, CuW, Pb absorbers 13 double-sided layers (full silicon)

CE-H (Hadronic) Active: Silicon + Scintillator / Silicon-photomultiplier Passive: Steel absorbers 21 Si layers (full + mixed)

One of the Silicon Layers

HGCAL structure (silicon detector module)

A complete Si layer

8" Low-Density sensor 192 cells with ~1.26 Sq. cm size 300μm & 200μm active thickness

Silicon sensor

Side view of the module

Planar p-type DC-coupled sensor pads

- simplifies production technology; p-type more radiation tolerant than n-type
- Hexagonal sensor geometry preferred to square
- makes most efficient use of circular wafer area
- 8" wafers preferable to 6"

(tifr

- reduces number of sensors produced & assembled into modules
- Cost per area is cheaper and simplifies the module mechanics
- 300µm, 200µm and 120µm active sensor thicknesses
- match sensor thickness (and granularity) to radiation field for optimal performance
- Simple, rugged module design & automated module assembly
- provide high volume, high throughput, reproducible module production & handling
- ~4.5K silicon-based HGCAL modules to be assembled in India for a total requirement of ~30K modules with ~15 modules per day capacity

We are assembling low density HGCAL modules at TIFR

Module components:

CuW baseplate with transfer tape

Low-density (LD) silicon sensor

PCB top side

Key steps involved:

- Gluing on Baseplate + Placing of sensor + gluing on sensor + placing of PCB
- Fiducial measurements
- Wire-bonding
- Pull testing
- Visual inspection
- Electrical testing
- Encapsulation

Instruments needed for Module Assembly

Coordinate Measuring Machine Mitutoyo Vision Active 202 Working area: 250x200x150mm

Wirebonder Delvotec 6400 – used for Belle II SVD Working area: 150 x 200, 25mm in Z Suitable for up to 6" wafers

Wire Pull Tester XYZTEC condor sigma lite

- Leica M80 Microscope(90X)
- Motic Microscope (100X)
- Mushashi SM-300SX-3A mini gantry
- Dry cabinet (15% RH)
- Storage units
- Optical table (180x90cm)
- Around 700 Sq ft of clean room area

Fisnar F7300N mini gantry

- Align transfer tape on the jig (3M-VHB double sided tape F9469PC)
- Remove parchment paper
- Hold the capacitor with crocodile clip which has to be connected to ground to avoid ESD damage to readout chips
- Place the Hexaboard on the transfer tape
- Perform QC on the Hexaboard with tape

Removing parchment paper

Holding the capacitor with Crocodile clip

Placing the Hexaboard on tape

Hexaboard bottom side

Aerotech Gantry setup

- Axis movement : X, Y, Z and Rotation
- Runs on Labview software
- Setup done for camera, syringe for dispensing glue and movement of gantry head in all directions
- Manifold setup for vacuum ON/OFF with the feedback system to NI products
- One of the vacuum holes on the gantry head will be used to pick up the sensor or Hexaboard pickup tool
- Second vacuum hole will be used to hold the sensor or Hexaboard
- Measure fiducials on the assembly tray
- Measure the two circle fiducials on the sensor left and right sides
- Program will calculate the Δx, Δy, rotation of the sensor and accordingly adjust while placing it on the baseplate
- Measure the fiducials on the Hexaboard
- Program will calculate the Δx, Δy, rotation of the Hexaboard with respect to the baseplate and accordingly adjust while placing them
- All fixtures are connected with vacuum and ground connections

Desktop with Control units

Gantry head with syringe and Camera setup

Aerotech Gantry

Gantry head with vacuum holes

Manifold system for Vacuum ON/OFF

Details of jigs on the Gantry

PUT holder

Full module assembly tray

Sensor Tray

Hexaboard Tray

Mitutoyo Vision Measuring Machine

Quick Vision Active

- Resolution: 0.1µm
- Full module assembly tray is 460x255x29mm
- Additional support attached on machine to accommodate the full module assembly tray
- During assembly we need to move the assembly tray to Vision measuring machine
- Measure fiducials on the assembly tray
- Measure the circle and Plus fiducials on the sensor left and right side
- Measure the FD3 and FD6 fiducials on the Hexaboard
- We calculate the Δx, Δy, rotation of sensor and Hexaboard with respect to baseplate

Fiducials on assembly tray

Fiducials on sensor

Fiducials on hexaboard

Additional support

Full module assembly tray

measuring fiducials on Hexaboard

Delvotec 6400 wirebonder

CMS

- Wedge bonding with 25µm Al. wire
- Suitable for 6" wafers
- Produced suitable jigs for frontside and backside bonding
- Performed backside bonding followed by encapsulation with Sylgard 186
- Performed frontside bonding with two operations
- Horizontal distance between bond 1(PCB and bond 2(sensor) is 1mm
- Gap between adjacent bonds is 125µm
- Number of wirebonds: 192 cells x 3 wirebonds/cell = 576 on step holes plus some additional bonds

Backside bonding jig

backside bonds

encapsulation of backside bonds

Frontside bonding jig

live module frontside bonding

Prototype module assembly – 2 Modules

CuW baseplate with tape and glue

Sensor with glue pattern

LD-V3 unpopulated hexaboard

1st Module

Target Δx , Δy : 50 μ m Acceptable is 100µm

Rotation accuracy: Target is +/- 0.02 deg Acceptable is +/-0.04 deg

Conclusion: Alignment is very good, optimized the glue spread which makes us to go for live module

2nd Module

Live Module - 1

- Recently we assembled one live module
- All procedures followed
- Very good results of Δx, Δy, rotation of sensor and Hexaboard with respect to baseplate
- Backside bonding and encapsulation done
- Frontside wirebonding completed
- Frontside encapsulation jig is ready
- Need to perform frontside encapsulation with Fisner F7300N mini gantry

Topside of live module

Placement plot

Video of Gantry operation if time permits (2 Minutes video)

Electrical QC test setup

IV curve (current limit = 100 Microamperes)

- This may not be the early breakdown as evident from similar studies at other module assembly centers
- We are in process of retesting the module with higher current limit

TIFR suppose to deliver ~ 4.5K low density HGCAL modules with 200µm and 300 µm sensor

Summary

- Producing a large number of modules and validating them are big challenge
- Most of the operations are optimized
- Most of the equipment are in hand and planning to procure wirebonder suitable for 8" wafer
- We build two mechanical modules followed by one live module produced
- Planning to produce more live modules
- Rampup of fixtures are under progress

TIFR suppose to deliver ~ 4.5K low density HGCAL modules with 200µm and 300 µm sensor