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Introduction

= |t is difficult to study strongly interacting QFTs because of non-perturbative
effects. An example is the confining/low-energy regime of QCD.
= Most successful candidate to do the non-perturbative computation is Lattice
QCD, which requires enormous amount of computational power.
= To this extend a Gauged Matrix Model has been proposed:
1. Dimensional reduction of (3 + 1)d SU(N) Yang-Mills theory to (0 + 1)d.
2. Captures certain key features (of course, not all!) of a non-Abelian gauge theory.
3. Being Quantum mechanical, this provides a simplified computational platform.
4. It has been shown to reproduce some of the Lattice QCD results with remarkable
accuracy.
= Previous and ongoing work with Matrix Model:
1. SU(3) Glueball masses Acharyya-Balachandran-Pandey-Sanyal-Vaidya, 2018
Light Hadron masses pandey-vaidya, 2020
Axial Anomaly Acharyya-Pandey-Vaidya, 2021

2-Color 1-flavor QCD  charyya-Aich-Bandyopadhyay-Vaidya, 202¢ (See Prasanjit’s Talk)

Gl B Ol

2-C0|0r 2-f|aV0r AdJOInt QCD Acharyya-Aich-Bhakta-Mudi-Vaidya, ongoing work



Matrix Model of SU(2) Gauge theory

The SU(2) gauged matrix model®* can be described as follows:

Quantum mechanical approximation of SU(2) Yang-Mills theory on R x S3
Building blocks : 3 x 3 real matrices M,,.

Spatial index i = 1,2,3 and color index a =1,2,3.

Gauge fields are Hermitian matrices A;(t) = M;, T2,

where the T2 = generators of SU(2) in the fundamental rep.

Rotations: A; — RjAj, R € SO(3)0t

Gauge transformations : A; — gA;gt, g€ SU(2)

Configuration space: My/AdSU(2), My = space of all 3 x 3 real matrices.
Field Strength, Fjj = —ej Ak — ig [Ai, Ajl.

Chromoelectric field: E; = 0;.A;, Chromomagnetic field: B; = %e;jk]—"jk
Pure YM Hamiltonian : Hyy = Tr|EiE; + Bi6;|

Potential: TI’(B,-B,') =Tr (.A,'.A,' + igGUk[A,’, .Aj].Ak = %2[./4;, Aj][.Ai, Aj]>

L (Narsimhan-Ramdas 1979, Singer 1978 and Balachandran et.al, 2014)



Adjoint Fermions in SU(2) Matrix Model

= Fermions are Grassmann valued matrix which only depend on time, A(t)
transforming as:

Adjoint rep. of Gauge group: Aaa = Uap(h)Aap,  h € AdSU(2)
1
spin-§ rep. of rotations: Aaas — Dig(R))\ﬁa, R € SO(3) 0t

= Left-Weyl Fermion (Gluino): X\ = < bga ) spin-index: o = 1,2

Baa b, } = 6parGaw,  color-index: a=1,2,3
o' a

= Total Hamiltonian pie:-pandey-vaidya (2020):

H = Hym+Hr = Hym + 28€abcbl ol sbpp Tr(AiTE) +  blbaa
——
fermion-glue interaction fermion curvature term



Rotational and Gauge symmetries

Under Spatial Rotation SO(3)

Under color SU(2)

spin-1 rep
Generated by
Ai | Li = —4€jTr(EjT?) Tr (A T?)
[I_,'7 Lj] = iE,'jkLk

adjoint rep
Generated by
G] = —Aeapc Tr (E;TP) Tr(A;TC)
G, Gg] = ieabc G5

spin-1/2 rep
Generated by
A Si= %blaagﬁbgb
[5,',5]'] = i€ijk5k

adjoint rep
Generated by
G2 = —i€apeb; bac
(G2, G¥] = iewe Gt

Ji=Li £S5, Ui di] = iegk,
= H commutes with J; and G*:  [H,G?] =0, [H,J]=0

= Physical states are annihilated by G?:  G? |phys) =0

= We can define R = bl _bn, — 3 = Nf — 3, commutes with the Hamiltonian H,

«a

6= G2+ G}, [G? GP] = icascG"

i.e., [R, H] =0, Classically we have U(1)g symmetry = anomalously broken in
the quantum theoryAcharyya-Pandey-\/aidya,2021



N =1 Supersymmetry

= Supercharges e witen, 1082 Q. = bgaaga (Eia+1iBia), a=1,2.
= [H,Q.] = —ighl,G, < Commutes with H

{Qu QL } = 0ap (2H + Ny — 3) — 20, (J; + 2Tr (A;T?) G?)

= For any energy eigenstate |\IJ#> satisfying H ‘\Ilﬁ> = /=2 ‘\Ilﬁ>:

(VA{Qu QLN 20 = £/ > —((Nr) ~3) + s

Bound saturated for any SUSY-Singlet

We have obtained the spectrum of spin-0 and spin-1/2 sector using numerical
methods.

Numerical Strategy:

1. Hilbert space, H = H Fermion @ H Boson
2. Hposon is infinite dimensional.

3. Use Rayleigh-Ritz (truncate Hposon to a given boson number, say Ny ).



Weak and Intermediate Coupling regime 0 < g < 2

o J=1/2
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= We obtained the low-lying energy eigenstates for J =0 and J = 1/2.
= The ground state:
= has spin-0 and is unique
= undergoes level crossing at g = gc <= Quantum Phase Transition
= Numerical estimate of g. ~ 0.225.
= There is no other level crossing in the ground state even in the strong coupling
regime



Two phases: 0 < g <2

= The properties of the phases and QPT captured by ground state expectation of

observables:
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o (Np) =0

e  “Non-interacting”: (Hjy;) =0 | o

e Only spin-0 glue: (L;L;) =0 | o

(Nf) =2

Interacting: (Hjn:) # 0

Glue with non-zero spin: (L;L;) #0



N =1 Supermultiplets
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= Each excited state is 4 fold degenerate: two spin-0 states + one spin-1/2 state
s Fo = *% ((N¢) — 3) <= SUSY-singlet

Near the QPT:

= The levels get rearranged.
= The degeneracy of the multiplets gets lifted in the neighbourhood of g,

Witten index, W = limg_,oo (—1)" exp{—BH} = 1< gs is unique bosonic state
9



Strongly Coupled Regime

To study the strong coupling (large g) regime:

A — g 13 A; and E; — g'/3E;, Define: v = g—2/3
The Hamiltonian
1
H = g |:Tr (E,-E,- + V2A,'A,' + il/e,-jk [.A,',.Aj] Ay — 5 [.A,',.Aj] [.A,', Aj])
+2€abe b, ,0%5bab TH(A; T€) + vbf,,baa] = eoH
We can now find the eigenvalues of H
For large g (or small ) A;A; term is suppressed = Finite cutoff error

Most severe at v = 0

At v =0(org — 00), V(A) has flat directions = Continuous spectra of H

Campostrini-Wosiek (2004), Anous-Cogburn (2019), Han-Hartnoll (2020)...
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= All low-lying eigenvalues of H have
o v=o] e same power-law dependence on the
25 — ]
bl //'/ ] boson number cut-off (N,.x)
=15F / ] . Cn
51.0,/ Nmaz =18 3 En ~ W, a =~ 0.93
max
0.5
Nmaz = 14
0.0k : s : - — = Ny — 0o gs is four fold degenerate
M = 2 spin-0 states + 1 spin-1/2
doublet
Lightest spin-0 states are 2-fold degenerate at v =0

Gluino condensate: limy_o (A\) # 0 = U(1)r B 7, "



Strong coupling regime with v > 0

v=025  (v=025~30]

e \ .= Finite-cutoff error: o
oo AEN(v) = Ey(v, Nmax) — E2(v)
= (V) = im0 En(v, Nimax)
Yol o = AE(v) ~ 2
M = crossover to a non-SUSY phase
A

005 010 015 020 025 030 03 04 w SUSY restored only at strong coupling (v = 0)

v
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Summa nd Discussion

= Weak and intermediate coupling:
= QPT at g. ~ 0.225
= Observables are discontinuous at g
= Away from the critical coupling, both phases are supersymmetric
= In vicinity of g.: SUSY breaks due rearrangement of levels
= Atrv=0:
= Power-law dependence of the energy eigenvalues
= Non-zero Gluino Condensate
= Continuous spectrum of H? Witten Index?

= Strong coupling regime: v > 0:
= Spectrum is discrete
= Lightest supermultiplet breaks: cross-over to a non-supersymmetric phase
= Why it happens: Quantum anomalies? smilga (1987), Casahorran-Esteve (1992) . . .
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Thank You
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