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Introduction

• It is difficult to study strongly interacting QFTs because of non-perturbative
effects. An example is the confining/low-energy regime of QCD.

• Most successful candidate to do the non-perturbative computation is Lattice
QCD, which requires enormous amount of computational power.

• To this extend a Gauged Matrix Model has been proposed:
1. Dimensional reduction of (3 + 1)d SU(N) Yang-Mills theory to (0 + 1)d.
2. Captures certain key features (of course, not all!) of a non-Abelian gauge theory.
3. Being Quantum mechanical, this provides a simplified computational platform.
4. It has been shown to reproduce some of the Lattice QCD results with remarkable

accuracy.
• Previous and ongoing work with Matrix Model:

1. SU(3) Glueball masses Acharyya-Balachandran-Pandey-Sanyal-Vaidya, 2018

2. Light Hadron masses Pandey-Vaidya, 2020

3. Axial Anomaly Acharyya-Pandey-Vaidya, 2021

4. 2-Color 1-flavor QCD Acharyya-Aich-Bandyopadhyay-Vaidya, 2024 (See Prasanjit’s Talk)
5. 2-Color 2-flavor Adjoint QCD Acharyya-Aich-Bhakta-Mudi-Vaidya, ongoing work
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Matrix Model of SU(2) Gauge theory

The SU(2) gauged matrix model1 can be described as follows:
• Quantum mechanical approximation of SU(2) Yang-Mills theory on R × S3

• Building blocks : 3 × 3 real matrices Mia.
• Spatial index i = 1, 2, 3 and color index a = 1, 2, 3.

• Gauge fields are Hermitian matrices Ai(t) = MiaT a,
where the T a = generators of SU(2) in the fundamental rep.

• Rotations: Ai → RijAj , R ∈ SO(3)rot

• Gauge transformations : Ai → gAig†, g ∈ SU(2)
• Configuration space: M2/AdSU(2), M2 = space of all 3 × 3 real matrices.
• Field Strength, Fij = −ϵijkAk − ig [Ai , Aj ].
• Chromoelectric field: Ei = ∂tAi , Chromomagnetic field: Bi = 1

2 ϵijkFjk

• Pure YM Hamiltonian : HYM = Tr
[
EiEi + BiBi

]
• Potential: Tr(BiBi) = Tr

(
AiAi + igϵijk [Ai , Aj ]Ak − g2

2 [Ai , Aj ][Ai , Aj ]
)

1(Narsimhan-Ramdas 1979, Singer 1978 and Balachandran et.al, 2014)
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Adjoint Fermions in SU(2) Matrix Model

• Fermions are Grassmann valued matrix which only depend on time, λ(t)
transforming as:

Adjoint rep. of Gauge group: λαa → uab(h)λαb, h ∈ AdSU(2)

spin-1
2 rep. of rotations: λαa → D1/2

αβ (R)λβa, R ∈ SO(3)rot

• Left-Weyl Fermion (Gluino): λ =
(

bαa

0

)
spin-index: α = 1, 2

{bαa, b†
α′a′} = δαα′δaa′ , color-index: a = 1, 2, 3

• Total Hamiltonian Diez-Pandey-Vaidya (2020):

H = HYM + Hf = HYM + 2gϵabcb†
αaσi

αβbβbTr(AiT c)︸ ︷︷ ︸
fermion-glue interaction

+ b†
αabαa︸ ︷︷ ︸

fermion curvature term
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Rotational and Gauge symmetries

Under Spatial Rotation SO(3) Under color SU(2)
spin-1 rep adjoint rep

Generated by Generated by
Ai Li = −4ϵijkTr (EjT a) Tr (AkT a) Ga

g = −4ϵabcTr
(
EiT b)Tr (AiT c)

[Li , Lj ] = iϵijkLk
[
Ga

g , Gb
g
]

= iϵabcGc
g

spin-1/2 rep adjoint rep
Generated by Generated by

λ Si = 1
2 b†

αaσi
αβbβb Ga

f = −iϵabcb†
αbbαc

[Si , Sj ] = iϵijkSk
[
Ga

f , Gb
f
]

= iϵabcGc
f

• Ji = Li + Si , [Ji , Jj ] = iϵijkJk , Ga = Ga
g + Ga

f , [Ga, Gb] = iϵabcGc

• H commutes with Ji and Ga: [H, Ga] = 0, [H, Ji ] = 0
• Physical states are annihilated by Ga: Ga |phys⟩ = 0
• We can define R = b†

αabαa − 3 = Nf − 3, commutes with the Hamiltonian H,
i.e., [R, H] = 0, Classically we have U(1)R symmetry ⇒ anomalously broken in
the quantum theoryAcharyya-Pandey-Vaidya,2021
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N = 1 Supersymmetry

• Supercharges E. Witten, 1982: Qα = b†
βaσi

βα (Eia + iBia) , α = 1, 2.

• [H, Qα] = −igb†
αaGa ⇐ Commutes with H

• {Qα, Q†
β} = δαβ (2H + Nf − 3) − 2σi

βα (Ji + 2Tr (AiT a) Ga)
• For any energy eigenstate

∣∣ΨJ
n
〉

satisfying H
∣∣ΨJ

n
〉

= E J
n
∣∣ΨJ

n
〉
:

⟨ΨJ
n|{Qα, Q†

α}|ΨJ
n⟩ ≥ 0 =⇒ E J

n ≥ −1
2 (⟨Nf ⟩ − 3) + J3︸ ︷︷ ︸

Bound saturated for any SUSY-Singlet

• We have obtained the spectrum of spin-0 and spin-1/2 sector using numerical
methods.

Numerical Strategy:

1. Hilbert space, H = HFermion ⊗ HBoson

2. HBoson is infinite dimensional.
3. Use Rayleigh-Ritz (truncate HBoson to a given boson number, say Nmax ).
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Weak and Intermediate Coupling regime 0 ≤ g ≤ 2
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• We obtained the low-lying energy eigenstates for J = 0 and J = 1/2.
• The ground state:

• has spin-0 and is unique
• undergoes level crossing at g = gc ⇐= Quantum Phase Transition

• Numerical estimate of gc ≈ 0.225.
• There is no other level crossing in the ground state even in the strong coupling

regime
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Two phases: 0 ≤ g ≤ 2

• The properties of the phases and QPT captured by ground state expectation of
observables:

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

〈N
f
〉

g

g
=

g
c

a)

0.0 0.5 1.0 1.5 2.0

-15

-10

-5

0

〈H
in

t
〉

g

g
=

g
c

b)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

〈L
iL

i〉

g

g
=

g
c

c)

g < gc g > gc

• ⟨Nf ⟩ =0 • ⟨Nf ⟩ =2

• “Non-interacting”: ⟨Hint⟩ = 0 • Interacting: ⟨Hint⟩ ̸= 0

• Only spin-0 glue: ⟨LiLi⟩ = 0 • Glue with non-zero spin: ⟨LiLi⟩ ̸= 0
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N = 1 Supermultiplets
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• Each excited state is 4 fold degenerate: two spin-0 states + one spin-1/2 state
• Egs = − 1

2 (⟨Nf ⟩ − 3) ⇐ SUSY-singlet

Near the QPT:

• The levels get rearranged.
• The degeneracy of the multiplets gets lifted in the neighbourhood of gc

Witten index, W = limβ→∞ (−1)F exp{−βH} = 1⇐ gs is unique bosonic state
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Strongly Coupled Regime

To study the strong coupling (large g) regime:

• Ai → g−1/3Ai and Ei → g1/3Ei , Define: ν = g−2/3

• The Hamiltonian

H = e0

[
Tr
(

EiEi + ν2AiAi + iνϵijk [Ai , Aj ] Ak − 1
2 [Ai , Aj ] [Ai , Aj ]

)
+2ϵabcb†

αaσi
αβbβbTr(AiT c) + νb†

αabαa
]

= e0H̃

• We can now find the eigenvalues of H̃
• For large g (or small ν) AiAi term is suppressed =⇒ Finite cutoff error
• Most severe at ν = 0
• At ν = 0 (or g → ∞), V (A) has flat directions =⇒ Continuous spectra of H̃

Campostrini-Wosiek (2004), Anous-Cogburn (2019), Han-Hartnoll (2020)...
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Ultra Strong Coupling Regime, ν = 0
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• All low-lying eigenvalues of H̃ have
same power-law dependence on the
boson number cut-off (Nmax )

Ẽn ∼ Cn

(Nmax )α , α ≈ 0.93

• Nmax → ∞ gs is four fold degenerate
⇒ 2 spin-0 states + 1 spin-1/2
doublet

• Lightest spin-0 states are 2-fold degenerate at ν = 0
• Gluino condensate: limM→0

〈
λ̄λ
〉

̸= 0 =⇒ U(1)R
SSB−−→ Z2 11



Strong coupling regime with ν > 0
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• Finite-cutoff error:
∆En(ν) ≡ Ẽn(ν, Nmax ) − EJ

n (ν)
• EJ

n (ν) = limNmax →∞ Ẽn(ν, Nmax )
• ∆En(ν) ∼ Dn(ν)

(Nmax )β(ν)

• crossover to a non-SUSY phase
• SUSY restored only at strong coupling (ν = 0)
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Summary and Discussion

• Weak and intermediate coupling:
• QPT at gc ≈ 0.225
• Observables are discontinuous at gc

• Away from the critical coupling, both phases are supersymmetric
• In vicinity of gc : SUSY breaks due rearrangement of levels

• At ν = 0:
• Power-law dependence of the energy eigenvalues
• Non-zero Gluino Condensate
• Continuous spectrum of H? Witten Index?

• Strong coupling regime: ν > 0:
• Spectrum is discrete
• Lightest supermultiplet breaks: cross-over to a non-supersymmetric phase
• Why it happens: Quantum anomalies? Smilga (1987), Casahorran-Esteve (1992) . . .

Thank You
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