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Major Questions in Modern Particle Physics

Relic density 

Testing DM and associated BSM descriptions in experiments??

Dark Matter?

⌦h2 = 0.1186± 0.0020

Theoretical description for  
particle dark matter??
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❖ Weakly interacting massive particle

❖ Feebly interacting massive particle

❖ Other production mechanisms, such as  conversion driven freeze out, 
dark sector number changing processes

Planck collaboration, 2018



❖ Weakly interacting massive particle ❖ Feebly interacting massive particle
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DarkMatter Production



Singlet-Triplet Fermionic Model
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N′ � → SU(3)c × SU(2)L × U(1)Y Singlet field

ρ → SU(3)c × SU(2)L × U(1)Y → (1,3,0)

Fermionic fields

Scalar triplet fieldΔ → SU(3)c × SU(2)L × U(1)Y → (1,3,0)

BSM fields ϕh

SM scalar doublet

⟨Δ0⟩ = vΔ ∝ μv2/M2
Δ

Induced vev

Higgs triplet 
is necessary

Renormalizable Lagrangian

• With a  symmetry,  DM can be stableZ2

μϕh
†Δϕh M2

ΔTr(Δ†Δ)

ρ1,2 for neutrino mass 

ρ3, N′� for dark matter 

Triplet field

 Nucl. Phys. B394 (1993) 35, Eur. Phys. J. C78 (2018) 302 [1711.08888], JHEP 11 (2022) 133



Scalar Spectrum
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CP even neutral scalars H1, H2

H1 = cos αH + sin αΔ0, H2 = − sin αH + cos αΔ0

sin α CP even neutral Higgs mixing

MH1
, MH2 Mass of the two Higgs

H1 SM like Higgs

G± = cos δ ϕ± + sin δ Δ±, H± = − sin δ ϕ± + cos δ Δ±

Goldstone Charged Higgs

tan δ = 2vΔ/v Charged Higgs mixing

M2
H± = μv/(sin δ cos δ) Charged Higgs mass

We choose α = δ



Dark Matter
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Mρ, MN Mass of the two fermions

ΔMρN = Mρ − MN

YρΔ ∼ 𝒪(10−10) − 𝒪(10−12) β ∼ 0

MN ∼ MN′�, Mρ ∼ Mρ3

N′�, ρ3 are the gauge basis

N is primarily singlet and  is primarily triplet stateρ

free parameter of the model

 can be dark matter depending on the massρ, N

Mixing between singlet  
 and triplet states due to  
YρΔTr(ρ̄3Δ)N′�

Mass splitting between the two fermions



Dark Matter Production
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• WIMP Dark Matter 
• DM is in thermal bath 
• Annihilation of bath particles,  
  decay of  and  late decay of  

   N play substantial role
H2

• FIMP Dark Matter as  
• N is non-thermal 
• Freeze in production (decay, annihilation) 
+late decay of  contributes to relic density

YρΔ < 𝒪(10−10)

ρ
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Collider Constraint on ρ

 contains  and ρ ρ± ρ0

 MeVΔM ∼ 167

 ρ± → ρ0π∓

Soft Pion, difficult to reconstruct due to small momentum 

The decay of  manifest itself as disappearing track signal  ρ±

 GeVMρ > 580

Theoretical prediction

Applicable irrespective of triplet is a DM or NLOP
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Direct and Indirect Constraint on  ρ

Applicable only if triplet is DM 

ρN → ρN
ρρ → SM + SM

Theory prediction

• No tree level diagram 
• One loop mediated by W and two loop gluons 

Relaxed constraint

Hisano et al, JHEP 07 (2011) 005
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Dark Matter Production - Scenario I (  as Dark Matter)ρ

• Heavy BSM Higgs sector ~ few TeV
• Triplet state  is lighter and singlet N is NLOP
•  has gauge interaction, hence thermal 

ρ
ρ

• Decay dominated scenario,  H2 → ρN, N → ρH1
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Under-abundant dark matter  
      unless  GeV or largeMρ = 2400

With additional decay dominated production channels, the under abundance can be compensated

•  is a thermal particle
•  produces  
• Late decay of  for correct relic density
• BBN constraint on lifetime of 

H2
H2 → ρN N

N → ρH1
N

H2/H±

ρ/ρ±

N

N

ρ

H1

Mρ > 580 GeV from disappearing track searches [ATLAS collaboration, Eur. Phys. J. C 82 (2022) 606]

E. Ma, Mod.Phys.Lett.A24:583-589,2009



11

Boltzmann equation for  and ρ N

DM abundance increases with a 
heavier BSM Higgs state

700 GeV < Mρ < 1500 GeV

1500 GeV < MH2
< 20 TeV 10−3 < α < 0.1

10−13 < YρΔ < 10−10

125 GeV < MN − Mρ < 3000 GeV

Mρ = 1.3 TeV, MN = 2 TeV, YρΔ = 2.5 × 10−12

FO contribution

Late decay 
contribution

Phase space suppression

No phase space suppression
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Dark Matter Production - Scenario II (  as Dark Matter)N

• Heavy BSM Higgs sector ~ few TeV thermal particle
• Triplet state  is heavier and singlet N is the 
      Dark Matter
•  is non-thermal particle
• Dark matter production is via thermal 
      freeze-in and late decay of NLOP  (non-thermalproduction)

ρ

N

H2/H
±

ρ/ρ±

N

ρ

N

H1

Dark matter abundance

Mρ = 4 TeV, MN = 600 GeV, YρΔ = 3.56 × 10−12

Thermal Freeze 
in contribution

Late decay 
contribution
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• As NLOP becomes heavier, NTFI contribution increases 
• Large abundance of triplet as mass of triplet increases  
• Mass of H2 set to  7 TeV• As  N becomes heavier, NTFI contribution increases 

NTFI dominated 

TFI dominated 
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Dark Matter Production  with Lighter H2

N

ρ

N
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+

H1,2, H
−

H±

W∓

ρ±

H±

ρ∓

N

 is lighter (within the reach of LHC) and  is kinematically forebodedH2 H2 → ρN

A.   dominated scenario2 → 1,1 → 2

B.   dominated scenario2 → 2
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Dark Matter Production  with Lighter H2

Fusion dominated scenario

•  is DM -> thermal particle.    ρ

H2 → ρN kinematically forbidden

AB → N → ρH1,2, A, B = ρ, ρ±, Hi

A lighter BSM Higgs can satisfy  
the relic abundance
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Substantial annihilation  contribution                

MN < Mρ, MH2
< Mρ + MN • Standard freeze-in and late decay  

•  large
ρ → NH2

AB → ρN, AB = W±, Z, ρ±, H1,2, H±

Decay contribution can be less than 50%



17

BSM Higgs H2 at the LHC
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pp → H±H2 → 6j + 2b, 3l + 2b + MET, 5l + MET, 6j + MET

pp → H+H− → 6l + MET, 2l + MET, 4j + 4l, 4j + MET for > 375 GeV

JET+MET, Multi-lepton+MET, Multi-lepton+Multi-jet channels can be powerful probe

σ ∼ 2.42 (0.242) f b, MH2
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BBN constraint

Late decay of  can influence Big Bang Nucleosynthesis N → ρH1

Depends on  sin α, YρΔ

Small values of    are ruled out sin α, YρΔ
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BBN Constraint

Late decay of  can influence Big Bang Nucleosynthesis ρ → NH1

Depends on  sin α, YρΔ

Small values of    are ruled out sin α, YρΔ
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Summary

• Singlet-triplet fermonic model is a viable model for neutrino mass  
generation and dark matter 

• With  late decay contribution plays a significant role 
In determining relic abundance 

• If the channel                is closed, substantial fusion and annihilation contribution  
 can be realised with a few hundred GeV BSM Higgs 

• JET+MET, Multi-lepton+MET, Multi-lepton+Multi-jet channels can be powerful probe 

• Big Bang Nucleosynthesis  constraint due to late decay of  

YρΔ ∼ 𝒪(10−10)

ρ, N

H2 → ρN



Thank You
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BBN constraint

• As the ratio decreases, NTFI contribution increases 
• Smaller Yukawa coupling to suppress the thermal contribution 
• Smaller Yukawa coupling to give larger lifetime of triplet 
• BBN exclusion  

Large NTFI contribution 

Large Thermal FI contribution 


