The AI/ML Driven Future # Particle Physics and Cosmology # Partha Konar THEPH @ PRL https://www.prl.res.in/~konar/ Partha Konar, Monalisa Patra, Sanmay Ganguly Frontiers of Particle Physics August 9-11, 2024 ## While world is mesmerised with different impossibles done with ML applications in our everyday life, #### **CONTENT RECOMMENDATION** #### SELF-DRIVING CAR GAMING **ROBOTICS** **Artificial Intelligence in Everyday Apps** Predictive Search Object Detection News Feed Relevance Recommendations Matching Algorithm **Smart Replies** ### While world is mesmerised with different impossibles done with ML applications in our everyday life, #### CONTENT RECOMMENDATION #### SELF-DRIVING CAR GAMING ROBOTICS **Artificial Intelligence in Everyday Apps** Predictive Search Object Detection News Feed Relevance Recommendations Matching Algorithm **Smart Replies** Dramatic shifts are also happening in almost all research fields—including Healthcare, Medicine, Finance, Education services etc ## While world is mesmerised with different impossibles done with ML applications in our everyday life, #### **CONTENT RECOMMENDATION** SELF-DRIVING CAR GAMING ROBOTICS © ChatGPT Gemini **Artificial Intelligence in Everyday Apps** Predictive Search Object Detection News Feed Relevance one Metabi Recommendations Matching Algorithm **Smart Replies** Dramatic shifts are also happening in almost all research fields—including Healthcare, Medicine, Finance, Education services etc Several experimental results found their relevance — such scientific discoveries are ML driven # Inspire-HEP literatures with `machine learning' 2012 => 2024 : increased by 90 times - Inspire-HEP literatures with `machine learning' 2012 => 2024 : increased by 90 times - Whereas, SENSEX moved 17k=>74k only 4.4 times! Machine Learning #### **Computational Frontier** Software and computing essentially present in all fronts instruments - Software and computing essentially present in all fronts - Computing/methodological innovation Full advantage of pristine data by state-of-the-art instruments - Software and computing essentially present in all fronts - Computing/methodological innovation Full advantage of pristine data by state-of-the-art - Software and computing essentially present in all fronts - Computing/methodological innovation => Full advantage of pristine data by state-of-the-art instruments - [2/Top 10] most-cited papers of all time in particle physics - are software programs : GEANT [Detector Simulation Toolkit] - & PYTHIA [Generation of HEP collision events] - Software and computing essentially present in all fronts - Computing/methodological innovation => Full advantage of pristine data by state-of-the-art instruments - [2/Top 10] most-cited papers of all time in particle physics - are software programs : GEANT [Detector Simulation Toolkit] - & PYTHIA [Generation of HEP collision events] - Software and computing essentially present in all fronts - Computing/methodological innovation => Full advantage of pristine data by state-of-the-art instruments - [2/Top 10] most-cited papers of all time in particle physics - are software programs :GEANT [Detector Simulation Toolkit] - & PYTHIA [Generation of HEP collision events] - Looking for new physics Beyond the Standard Model (BSM) #### **Computational Frontier** 2020s - 2030s ~MB / event (~200 collisions) 4 x 10⁷ event / sec. (40 MHz) ~ 40 TB / sec. 109 TB / year = 1 Zettabyte / yr **Vera Rubin** 1000 x 3.2 Gigapixe 15 TB / night 20k alerts per minute DUNE 2020s - 2030s ~ 6 GB / module 5.4 ms readout window $\sim 10^8 \text{ TB / year} = 100 \text{ EB / yr}$ SN trigger ~ 0.5 PB real time processing (1 trigger / month) ~99.98% of data are removed in real time (~10 kHz/40 MHz) ~10 years of running 500 PB image database = **Exabytes of data**(per experiment) 15 PB object database, 40 Billion sources years of running ~10 years of running zero suppression + ~ 400 PB of data 2210.05822 : The Future of High Energy Physics Software and Computing ### MACHINE LEARNING #### FOR HEP COMMUNITY - Machine learning is not new for HEP community - Used in low to high level experimental measurements with track finding, calorimeter hit reconstruction, particle identification, energy/momenta reco - Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used extensively on high level variables with primary focus as Classifier - Significant contribution in Higgs discovery - The emergence of modern deep learning era greatly outperformed the previous state of arts in last one decade or so - Driving forces - - Advent of graphics processor (GPU) + Increased computing power - Large available data + Development of advanced ML architectures ### MACHINE LEARNING #### AND .. GOING DEEPER - Classification: Find faint signal against a large background - Move into higher dimensional space - Multivariate analysis with High Level Variables - Low Level Variables from detectors (number of dimensions very large) - Find the Division Boundary in this higher dimensional space - Best possible [under-fitting?] but Trustworthy [over-fitting?] way - Neural Networks based on interconnected nodes in layered structure - In analogy with brain neurones - Connects different input/ derived data - Involve free parameters (weight and bias) [inductive bias?] - Optimise "free parameters" using labeled data [Model] ### MACHINE LEARNING #### AND .. GOING DEEPER - Universal function approximation: NN with a single hidden layer can approximate any continuous function to any desired precision! - Deep learning models with multiple hidden layers solves the need for infinitely large no of nodes in shallow NN - Learning scalable with data larger data for better performance - Deep learning models are now capable of extracting feature directly from low level data - End for physics intuitive high level variables from domain experts? ## Data Representation ✓ Fundamental data structure: Fixed-length Tensors (multi-dimensional arrays) - ▶ Time series data or sequence data: 3D tensor of shape(samples, timesteps, features) - ► Images: 4D tensor of shape(samples, channels, height, width) For a grayscale image: channel =1; For RGB image: channels = 3 - ▶ Video: It is a 5D tensor of shape(samples, frames, channel, height, width) ## Data Representation ✓ Fundamental data structure: Fixed-length Tensors (multi-dimensional arrays) - ▶ Time series data or sequence data: 3D tensor of shape(samples, timesteps, features) - ► Images: 4D tensor of shape(samples, channels, height, width) For a grayscale image: channel =1; For RGB image: channels = 3 - ▶ Video: It is a 5D tensor of shape(samples, frames, channel, height, width) - ✓ Note: Euclidean spaces are isomorphic to $x \in \mathbb{R}^n$; $\vec{x} = \{x_1, x_2, \dots x_i \dots x_n\}$ in a n-dimensional linear space - ✓ However some data does not map neatly into \mathbb{R}^n => Graph Neural Networks seek to adapt existing ML to directly process non-Euclidean structured data as input ## Data Representation ✓ Fundamental data structure: Fixed-length Tensors (multi-dimensional array ``` ✓ Point clouds: A flexible geometric representation suitable for abstract features V Graphs: Two basic elements - Nodes represent entities in the data (such as members of an entities in the dat Graphs: Two basic elements - Nodes represent entities in the data (such as members, (such as online social network), while Edges symbolise relationships between those entities, (such as friendship hetween members of a social network). friendship between members of a social network). ``` snape(samples, channels, height, width) Late image: channel =1; For RGB image: channels = 3 ▶ Video: It is a 5D tensor of shape(samples, frames, channel, height, width) - ✓ Note: Euclidean spaces are isomorphic to $x \in \mathbb{R}^n$; $\vec{x} = \{x_1, x_2, \dots x_i \dots x_n\}$ in a n-dimensional linear space - ✓ However some data does not map neatly into $\mathbb{R}^n \Longrightarrow$ Graph Neural Networks seek to adapt existing ML to directly process non-Euclidean structured data as input ### How ML works? ### How ML works? ### How ML works? - Decision boundary: surface that divides multi-dim feature space into distinct groups of data points. - Training: ML algorithm discovers the decision boundary - Testing: Then uses to forecast the class of unseen data points. - Key drivers for its growth - Data, Algorithms & Hardware (graphics processing unit or GPU) ### Three Ways to Learn #### **SUPERVISED** **UNSUPERVISED** REINFORCEMENT ### Progress of Deep Learning - ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition - ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)] - Since then, these competitions are consistently won by deep convolutional nets ### Progress of Deep Learning - ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition - ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)] - Since then, these competitions are consistently won by deep convolutional nets ## Language and image recognition capabilities of AI systems have improved rapidly Test scores of the AI relative to human performance Source: Kiela et al. (2021) Dynabench: Rethinking Benchmarking in NLP OurWorldInData.org/artificial-intelligence • CC BY Imitate (defeat) human intelligence and capability in visual perception, speech recognition, decision-making, language processing, and so on. ### DEEP MACHINE LEARNING #### CATEGORY Strategy — Representations — Targets / tagging — strategies - Classification - → Jet Image - → Event Image - → Sequence (Recurrent NN) - Graph (Graph NN) - Sets (Point cloud Graph) - Quarks vs gluons - → Boosted H / W / Z / Top tag - → New particles and models - Particle tagging at detector - Neutrino flavour - → Weak/Semi/Unsupervised - Reinforcement Learning - Quantum Machine Learn - → Feature Ranking - → Optimal Transport - Regression - → Parameter estimation - → Pileup mitigation - → Parton Distribution Func - → Symbolic Regression - → Function Approximation - GANs - → Autoencoders - → Phase space generation - → Normalizing flows Generative models Primarily for Students and PDFs working on using deep learning Preparatory school (Online) [June 12 - 23 2023] Lecture + Tutorial 28 Aug - 04 Sep 2023 > Workshop 5-8 Sep 2023 https://www.icts.res.in/program/ml4he Machine Learning for Particle and Astroparticle Physics ML4HEP 2024