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Dramatic sﬁlfts are also ﬁayyening in almost all research ﬁefcfs —

incfucﬁ’ng Healthcare, Medicine, Finance, Education services etc

Several experimenta[ results foum{ their relevance — such scienmfic discoveries are ML driven
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* Insplre-HEP 11teratures-W1th machlné léarnlﬁg
2012 =>2024: increased by 90 times
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Inspire-HEP literatures with machme learnmg
2012 =>2024 : increased by 90 times
Whereas, SENSEX moved 17k=>74k — only 4.'4times!
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[2/Top 10] most-cited papers of all time in particle physic
— are software programs :

GEANT [Detector Simulation Toolkit]
& PYTHIA [Generation of HEP collision events]

Looking for new physics Beyond the Standard Model (BSM
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High-Luminosity

Origin of Mass Large Hadron Collider

Asymmetry Vera Rubin

Origin of Universe ~MB / event (~200 collisions) 1000 x 3.2 Gigapixel ~ 6 GB/module

images / night 5.4 ms readout window

4 x 107 event / sec. (40 MHz) 105 TB / year = 100 EB /yr

Unification of Forces
15 TB / night
New Physics ~40TB / sec.

Beyong the Standard Model - 109TB / year = 1 Zettabyte / yr 20k alerts per minute SN trigger ~ 0.5 PB real time

processing (1 trigger / month)

Neutrino Physics

in real time (~10 kHz/40 MHz)

o compression + trigger
Dark Energy oy 500 PB image database

~10 years of running ~10 years of running

15 PB object database,

40 Billion sources ~ 400 PB of data

= Exabytes of data

Proton Decay | Q
(per experiment)
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FOR HEP COMMUNITY

Machine learning is not new for HEP community

Used in low to high level experimental measurements with track
finding, calorimeter hit reconstruction, particle identification,
energy/momenta reco

Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used

extensively on high level variables with primary focus as Classifier
— Significant contribution in Higgs discovery

The emergence of modern deep learning era greatly outperformed
the previous state of arts in last one decade or so

Driving forces -

— Advent of graphics processor (GPU) + Increased computing power
— Large available data + Development of advanced ML architectures

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics



MACHINE LEARNING

AND .. GOING DEEPER

e Classification: Find faint signal against a large background

@ Move into higher dimensional space —
@ Multivariate analysis with High Level Variables
o | ow Level Variables from detectors (number of dimensions very large)

e Find the Division Boundary in this higher dimensional space
— Best possible [under-fitting?] but Trustworthy [over-fitting?] way

® Neural Networks based on interconnected nodes in layered structure
— In analogy with brain neurones

— Connects different input/ derived data

— Involve free parameters (weight and bias) [inductive bias?]
— Optimise “free parameters” using labeled data [Model]

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics



~ MACHINE LEARNING

AND .. GOING DEEPER

@ Universal function approximation: NN with a single hidden layer can
approximate any continuous function to any desired precision!

® Deep learning models with multiple hidden layers solves the need for
infinitely large no of nodes in shallow NN

e Learning scalable with data - larger data for better performance

®© Deep learning models are now capable of extracting feature directly

from low level data

— End for physics intuitive high level variables from domain experts?

Input Layer Hidden Layer

Partha Konar, PRL CDeego Leaming Frontier.. in Particle Tﬁysics




v Fundamental data structure: Fixed-length Tensors (multi-dimensional arrays)
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» Time series data or sequence data: 3D tensor of shape(samples, timesteps, features)

» Images: 4D tensor of shape(samples, channels, height, width)
For a grayscale image: channel =1; For RGB image: channels = 3

» Video: It is a 5D tensor of shape(samples, frames, channel, height, width)
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v Note : Euclidean spaces are isomorphic to x € R"; X = {x,x,,...x;...x,}
in a n-dimensional linear space

v However some data does not map neatly into R” => Graph Neural Networks seek to adapt
existing ML to directly process non-Euclidean structured data as input

—
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- 5_ ®© Key drlvers for ItS growth

— Data Algorlthms & Hardware (graphlcs processmg unlt or GPU)




Three Ways to Learn
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UNSUPERVISED
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Language and image recognition
capabilities of Al systems
have improved rapidly

Test scores of the Al relative to human performance

1 Al systems perform better than
the humans who did these tests

Al systems perform worse

Handwriting
recognition

Reading
compre- :
hension Language ©

Speech Image standing
recognition recognition

1 | i | VL L | Y ORI TR | ’l 1
Ak 2000 2005 2010 2015 2020

The capability of each Al system is normalized to an initial performance of -100.

Source:
Kiela et al. (2021) Dynabench: Rethinking Benchmarking in NLP OiLr']r g\g(t)arld
OurWorldInData.org/artificial-intelligence e CC BY




DEEP MACHINE LEARNING
CATEGORY

Strategy Representations Targets / tagging Strategies

= Jet Image = Quarks vs gluons = Weak/ Semi/ Un-
= FEvent Image = Boosted H/W/Z/1op tag|| supervised

Classfication || = Segquence (Recurrent NN) || = New particles and models || = Reinforcement Learning
= Graph (Graph NN) = Particle tagging at detector ||= Quantum Machine Learn
= Sets (Point cloud - Graph) ||= Neutrino flavour = Feature Ranking

= Optimal Transport
=  Parameter estimation

= Pileup mitigation
Regression || = Parton Distribution Func
= Symbolic Regression
= Function Approximation
= (ANs
= Autoencoders
Generative models = Phase space generation
= Normalizing flows

Anomaly detection = :
C":*g;?'z ’K%lnat’, PRL Deep Learning Frontier.. in Particle ?ﬁysics HEP ML Living Reviews 15



https://iml-wg.github.io/HEPML-LivingReview/

STATISTICAL METHODS AND MACHINE LEARNING [kt

working on using deep learning
IN HIGH EN'.ERGY P YSICS Preparatory school (Online) I] 4 \
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Lecture + Tutorial ML4HEP
28 Aug- 04 Sep 2023 10PB 2024

Machine Learning for Particle and Astroparticle Physics
BN | ML4HED 2024

https://www.icts.res.in/program/mi4hep
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