Microlensing Black Hole Shadows

MNRAS 528 (2024) 4, 7440-7457; ArXiv: 2306.02440

In collaboration with Prof. Joe Silk, IAP, Paris, France

Frontiers in Particle Physics 2024

Centre for High Energy Physics (CHEP), IISc, Bengaluru, India
(Aug 9 - 11, 2024)

Himanshu Verma

Postdoc, Department of Physics, IIT Bombay, India

Research Interest: Gravitational Lensing, Compact Objects, Exoplanets, Dark Matter, Data Analysis

Email: verma.himanshu002@gmail.com

Motivation

Black Hole Images

M87 (2019) Sgr A* (2022)

PC: Event Horizon Telescope Collaboration

What is next?

Movie of the shadow with much sharper resolution

 Also the possibility of putting space-based baselines (Moon, Earth-Sun 2nd Lagrange point)

Other BH shadows (10⁶)

Ref: Johnson et al. 2023

Problem Statement

Another lens positioned between us and the shadow

Problem Statement

Another lens positioned between us and the shadow

 What happens to the shape of a black hole shadow when a compact object (gravitational lens) passes in the foreground of the shadow?

 How plausible it is to observe the phenomenon in Sgr A* shadow?

Microlensing BH shadow

Microlensing Black Hole Shadow

Microlensing Black Hole Shadow

Microlensing Black Hole Shadow: Sgr A*

Einstein Angle = 7.8 micro-arcsec

M = 1 Solar Mass, r = 0.5 pc

Derived Observables

1. Shift in the center

$$\overrightarrow{OC} \equiv \frac{\overrightarrow{OI}_c(\pi) + \overrightarrow{OI}_c(0)}{2}.$$

2. Magnification of the size

$$\langle R_L \rangle = \frac{1}{2\pi} \int_0^{2\pi} |\vec{R}_L(\phi)| d\phi.$$

3. Asymmetric Shape

$$A = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} (R_L(\phi)^2 - \langle R_L \rangle^2) d\phi}.$$

Shift in the center of the shadow Sgr A*

Size of the shadow

Max Enhancement: **50% of the true size**

Asymmetry in the shadow shape Sgr A*

Detectability of the microlensed shadow of Sgr A*

Estimating the uncertainty in the radius

$\lambda = 1.3 \text{ mm}$					
D (km)	$\theta_{\rm res}$ (μas)	N	# of epochs	σ_a (μ as)	% error
10,700 (Earth)	25.06	1.9	1	17.98	73.8
300,000 (Earth-Moon)	0.89	54.5	1	0.121	0.50
1,500,000 (Earth-L ₂)	0.18	272.4	1	0.011	0.04
	λ =	0.5 mm			
10,700 (Earth)	9.64	5.1	1	4.288	17.61
300,000 (Earth-Moon)	0.34	141.7	1	0.029	0.12
1,500,000 (Earth-L ₂)	0.07	708.3	1	0.003	0.01

Event rate due to stellar components of Milky Way

$$\Gamma \approx 1.4 \times 10^{-3} \text{ yr}^{-1} \frac{v}{100 \text{ km/s}} \left(\frac{D_s}{8.2 \text{ kpc}}\right)^{3/2} \sqrt{\frac{1 \text{ M}_{\odot}}{M} \frac{10^{-3}}{\sigma_a/R}}.$$

Potential enhancement in the event rate

 20,000 astrophysical black hole cluster within central parsec due to dynamical friction

[Miralda-Escude & Gould 2000]

 Observational Hint: X-ray density cusp

[Hailey et al. 2018]

- 1. M87?
- Other shadows?

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

- Asymmetry can reach upto 8% (twice due to the spin of SMBH)
- Size can become 150% of the true size
- Low event rate (0.0014 per yr) for Sgr A* due to solar mass stellar objects
- Novel technique to probe the compact object population around galactic center
- A standard background effect for the tests of gravity/beyond standard physics

Thank You!

Backup Slides (EHT)

$$\rho(r) = \frac{5}{16\pi} \frac{N_{\rm bh} M}{r_0^3} \left(\frac{r}{r_0}\right)^{-7/4},$$

$$v(r) = 68.5 \text{ km/s} \sqrt{\frac{1\text{pc}}{r}}.$$

$$\Gamma_{\rm bhc} \approx 0.3 \ {\rm yr}^{-1} \frac{N_{\rm bh}}{20,000} \left(\frac{1 \ {\rm pc}}{r_0}\right)^3 \left(\frac{D_s}{8.2 \ {\rm kpc}}\right)^{3/2} \sqrt{\frac{7 \ {\rm M}_{\odot}}{M} \frac{10^{-3}}{\sigma_a/R}}.$$