Measuring Neutrino-Nucleus interaction using ANNIE

Navaneeth Poonthottathil

IIT Kanpur

Frontiers in Particle Physics 2024, IISc Bengaluru

Long Baseline Neutrino Experiment

- Shoot a neutrino beam from Fermilab (IL) to SURF (SD), 1300 km baseline.
- Four 10 kt liquid argon detectors, very promising detector technology.
- Physics goals to measure CP violation (matter-antimatter asymmetry), mass hierarchy of neutrino, proton decay.

Liquid Argon TPC

- DUNE uses Liquid Argon Time projection chambers for detecting neutrinos.
- High energy particles ionize liquid argon atoms along their paths.

Neutrino Oscillation Measurement

- Produce a pure on-axis ν_{μ} beam with spectrum matched to oscillation pattern at the chosen distance.
- Compare the near and far detector spectrum, obtain the neutrino oscillation parameters.

The Accelerator Neutrino Neuclues Interaction Experiment

ANNIE has 45 collaborators from 17 institutions in 6 countries

GeV-scale neutrino interactions

- Across the GeV-energy range, there are multiple possible interaction types (and particles produced).
- ► Final-state interactions for different events could lead to different neutron multiplicities.
- Additional cross-section measurements can help refine neutrino interaction models.

Role of Understanding the Interaction

- Knowledge of neutrino-nucleus scattering cross sections is crucial to the global neutrino physics program.
- We still have a long way to understand the nuclear effects that define what we see in our detectors..
- ► Final State Interactions (FSI) and other nuclear effects make different interaction channels have the same final topology

True CCQE interaction

$$\begin{split} E_{\nu}^{QE} &= \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})} \\ Q_{QE}^2 &= 2E_{\nu}^{QE}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) - m_{\mu}^2 \end{split}$$

- ► Two body scattering with an outgoing lepton.
- ► Target nucleon assumed at rest.
- Calculate kinematics from the outgoing leptons

Neutron multiplicity identification (and confusion)

Goals of ANNIE

- Primary physics goal is to measure neutrino induced neutron yields in water as a function of outgoing lepton kinematics.
- Demonstrate new technologies that will be helpful for physics analysis.
- Perform a measurement of the CC inclusive cross section as a function of momentum transfer
- ANNIE's in collaboration with SBND would able to compare cross-sections measurements on water (oxygen) and argon nuclei.
- Large Area Picosecond Photodetectors (LAPPDs) for precise event reconstruction
- Use of Water-based Liquid Scintillator
- ► ANNIE will provide R&D for future large-scale experiments

Booster Neutrino Beam

- 8 GeV protons8 GeV protons on Beryllium target
- Mean neutrino energy of 700 MeV.
- Composition: 93 % of ν_{μ} , 6.4 % $\bar{\nu}_{\mu}$ and 0.6 % of ν_{e} and $\bar{\nu}_{e}$ = 9.0 = 11/37

ANNIE Detector in Phase II

- ► In Phase I background neutron is measured especially skyshine component
- ► Background rate less than 0.02/m³/spill A.R. Back et al 2020 JINST 15 P03011

ANNIE Detector during Installation

Equipped with 132 photomultipliers.

PMT types

Manufacturer	ETEL	Hamamatsu	Hamamatsu	Hamamatsu	Hamamatsu
Origin	LBNE R&D	LUX	Watchboy	New	WATCHMAN
Туре	D784KFLB	r7081	r7081	r5912	r7081
"Name"	LBNE (LB)	LUX (LX)	Watchboy (WB)	New (HM)	Watchman (WM)
Size	11"	10"	10"	8"	10"
HQE?	Yes?	No	No	Yes	Yes
Quantity	22	20	45	40	10

ANNIE Event Rates

- ▶ BNB delivers 4×10^{12} POT per $1.6 \mu s$ at 5Hz.
- Mean Energy 700 MeV
- lacktriangle Average 1CC u_{μ} interaction in every 150 spill no pileup

Category	NC	CC	CCQE	CC-other
All	11323	26239	13674	12565
Entering MRD	2	7466	4279	3187
Stopping in MRD	2	4830	2792	2038

Table: Event counts in 2.5-ton fiducial volume over 2×10^{20} POTs \sim 1year

BNB Beam structure

▶ 1.6 us wide, 53.1Hz, 2ns width, 82 Bunchs

Do we see Neutrinos - Phase II

1.6us beam spill window visible

Less statistics for extended readouts

Neutrino candidate

Neutron Capture

- ► Gadolinium's average neutron capture cross-section is high compared with pure water. Cross-section: Gd: 49000 barns. H: 0.3 barns.
- Neutrons after thermalization, capture time: Gd: 30 μ s. H: 200 μ s.
- ► Signature: Gd: 8 MeV cascade. H: 2.2 MeV .

Neutron Multiplicity - Very Preliminary

- Neutron multiplicity distribution in data for beam neutrino.
- These are events featuring a stopping muon track in the MRD.

ANNIE Detector R&D: LAPPDs Developments

- ► LAPPDs are 8" × 8" MCP-based imaging photodetectors, with target specifications of:
 - $ightharpoonup \sim 50$ picosecond single-PE time resolution
 - <1 cm spatial resolution</p>
 - > 20% QE
 - ► High gain and low dark noise rate
- Opportunities to work on new detector technology

ANNIE vertex resolution improvement with LAPPDs

Large improvement in the in the vertex resolution of reconstructed event.

- ► 128 PMT-only: 38 cm
- ► 5LAPPDs+128PMTs: 12cm(more than a factor of 3!)

LAPPD Deployment

- LAPPD system has been fully tested and validated .
- Successfully deployed LAPPDs in the ANNIE tank.

First Neutrinos in LAPPD

World's first: neutrinos observed with an LAPPD

Phase III Water based Liquid Scintillator

- Combination of pure water and hydrocarbon liquid scintillator
- Directionality & kinematic reconstruction (Cherenkov)
- ► High light yield & calorimetric reconstruction (scintillation)
- Combines the advantages of water (low light attenuation, low cost) and liquid scintillator (high light yield)
- ANNIE demonstrated use of WbLs for the first time in neutrino beam arXiv:2312.09335

Conclusions

- ANNIE will assess neutron multiplicity, offering data to validate models describing final states with multiple nucleons.
- Phase I measurement proves the off beam background is low \sim good enough for physics measurement
- Data collection is currently in progress, made an initial measurement of neutron multiplicity
- ► ANNIE is the first neutrino detector that uses LAPPDs to detect accelerator neutrinos
- Additionally, we have examined the capabilities of a water-based liquid scintillator.
- ► More data is coming! stay tuned.

Thank you

Backup Slides

Reconstruction

Step1: "Simple vertex" fit

four parameter fit: (x, y, z, t)

- Conceptualize Cherenkov light as coming from a point source
- Assume a hypothesized point-source location $(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp})$
- For each photon hit, calculate the point time residual:

$$\Delta t = t_{hit} - \frac{L_p}{c/n}$$
 Photon travel time

- For all the hits, calculate the timing-based Figureof-Merit (timing likelihood)
- Adjust four parameters to maximize time FOM.
 FOM takes the maximum value when the width of the time residual distribution is minimized

 $(x_{hit}, y_{hit}, z_{hit}, t_{hit})$

Energy Resolution

Detection of Cherenkov Photons

Muons at MRD

Detector Calibration

- PMT single p.e calibration
 - ► LED fibers with attached diffuser tip
- ► LAPPD timing calibration
 - 405nm picosecond laser
- Neutron Calibration
 - AmBe source, tag neutron events by using coincidentally emitted gamma
 - lacksquare 100 us detection window \sim 100 tagged neutrons per second

Rare Physics searches

- Diffuse Supernova neutrino search from accumulation of all past supernova explosion.
- Small but steady source of supernova neutrinos.
- Never observed, challenging due to significant background
- lacktriangle Tagging atmospheric neutrinos helps \sim more likely to produce neutrons

How ANNIE Works

- 1 CC interaction in the fiducial volume
- 1 Muon direction reconstructed using LAPPDs & momentum reconstructed with the MRD.
- 2- Neutrons are getting thermalized in the water volume

Phase I

Image: Vincent Fischer

- Measurement of the neutron background rate is very important
- Source of neutron background:
 - Skyshine neutrons → Neutrons from the beam dump entering the detector
 - Dirt neutrons →Neutrons originating from neutrino interactions downstream of the dump.

Phase I

- Background neutron flux is different at each position, especially the skyshine component
- ▶ Background rate less than 0.02/m³/spill
- ▶ Not an issue for Phase II physics measurments
- Published A.R. Back et al 2020 JINST 15 P03011