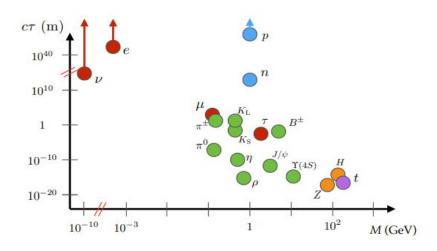
Long-lived particles in BSM: A biased take on the subject

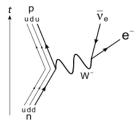
Shankha Banerjee (IMSc, Chennai)


Frontiers in Particle Physics

CHEP, IISc Bangalore

9th August, 2024

Long-lived particles in the SM



arXiv: 1903.04497; Alimena et al.

- In SM, Z-boson has τ ~ 2 x 10⁻²⁵ s, e and ν are stable. *In the SM, proton is also stable*
- For a charged pion decay $\pi^+ \rightarrow \mu^+ \nu_{\mu}$

$$au_{\pi^+}^+ \sim g_W^2 (rac{M_\pi}{M_W})^4 M_\pi \ au_{ au^+}^+ \sim 2.6 imes 10^{-8} ext{ seconds}$$

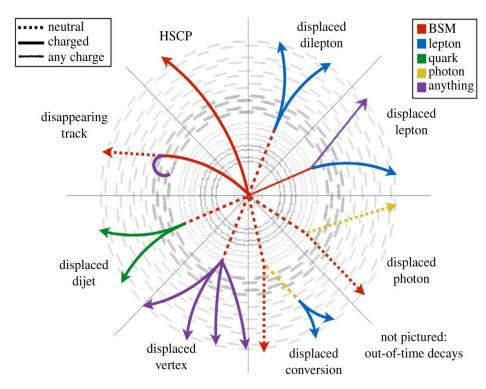
 For a neutron decay, the neutron and proton are nearly degenerate. Lifetime is around 15 minutes.

• The lifetime of the muon is $\sim 2.2 \,\mu s$

Long-lived particles in the SM

- SM particles can be long-lived if an approximate symmetry makes them stable
 - **1. For protons:** Baryon Number Conservation (approximate symmetry in the SM). In some GUTs, a proton can decay with an extremely large decay lifetime ($\tau \ge 10^{34}$ years)
 - 2. For electrons and neutrinos: Stable because *Lepton Number* is conserved in the SM
 - 3. For neutrons: *Energy conservation within nuclei*
- Has to do with the weakness of weak couplings; hierarchies of scales, etc.
- Mass degeneracies → suppress decay rates
- Small symmetry breaking parameters → suppress decay rates

What makes a particle (X) long lived?


• The lifetime of a particle, X, can be written as

$$au^{-1} \sim \Gamma = rac{1}{2m_X} \int \mathrm{dLIPS} |\mathcal{M}(m_X
ightarrow \{p_f\})|^2$$

- A particle, X, can be long-lived if any or all of the following criteria holds.
 - **1.** The matrix element is small \rightarrow small broken symmetry \rightarrow small coupling values
 - 2. Small phase space → nearly degenerate particle spectrum
 - 3. Couplings suppressed by the scale of new physics

[See Shilpi's slides]

Long-Lived Particles: Search topologies

Roeck, 2019

Many models give rise to such signatures; example: RPV SUSY, AMSB SUSY (backup), gauge-mediated SUSY, split SUSY (backup), vCMSSM (backup), Hidden Valley models, dark QED, ALPs, and more.

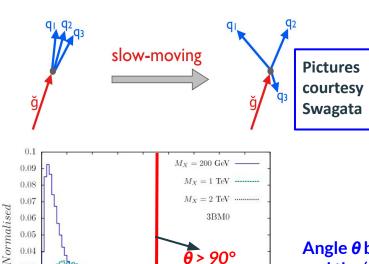
All of these searches require dedicated algorithms, detector modifications/additions, etc.

See talks by Shilpi and Swagata!

SUSY Example 1: R-parity violating SUSY

- R-parity defined as $R_p = (-1)^{3(B-L)+2S}$; B = Baryon number, L = Lepton number, S = particle spin
- SM particles have $R_p = 1$ and superpartners have $R_p = -1$
- In *R-parity* conserving SUSY, LSP is stable and a potential dark matter candidate
- In R-parity violating SUSY, this type of particle can decay and B and/or L may not be conserved

$$W_{RPV} = \mu_i H_u L_i + rac{1}{2} \lambda_{ijk} \epsilon^{lphaeta} L_{ilpha} L_{jeta} E_k^c + \lambda_{ijk}^{'} \epsilon^{lphaeta} L_{ilpha} Q_{jeta} D_k^c + rac{1}{2} \lambda_{ijk}^{''} \epsilon^{lphaeta\gamma} U_{ilpha}^c D_{jeta}^c D_{k\gamma}^c$$


L, Q, E, D, and U are the superfields corresponding to the lepton doublet, quark doublet, charged lepton singlet, down-type quark singlet, and up-type quark singlet, respectively. The λ , λ' , and λ'' are the R-parity violating couplings. $\epsilon^{\alpha\beta}$, $\epsilon^{\alpha\beta\gamma}$ are totally antisymmetric tensors

ullet Example: Long-lived neutralino $ilde{\chi}_1^0
ightarrow l_i^\pm + q_j + ar{q}_k$

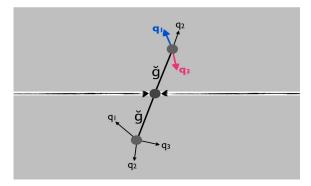
Due to the smallness of the λ' coupling, the decay width of the neutralino is small, leading to a long lifetime. arXiv: hep-ph/0406039; R. Barbier et al. [2005]

SUSY Example 1: R-parity violating SUSY

ullet For an RPV scenario like $ilde{\chi}^0_1 o qqq$ a significant fraction of the decay particles can move in the backward direction (Backward Moving Objects)

80

 $\theta(q, X)$ [in degrees]


100 120

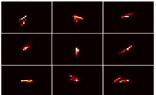
140 160

0.03 0.02

0.01

20

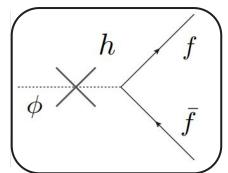
Angle θ between the direction of X and the 'massless' daughter (one of the quarks, q)

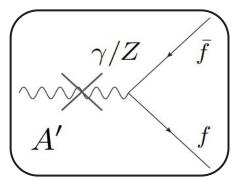

arXiv:1706.07407; SB, Bélanger, Bhattacherjee, Boudjema, Godbole, Mukherjee; PRD (2018)

SUSY Example 2: Gauge Mediated SUSY Breaking

- Gauge-Mediated Supersymmetry Breaking (GMSB) → SUSY breaking mediated through gauge interactions rather than gravitational interactions
- SUSY broken in a hidden sector, and the breaking effects are transmitted (via "messengers") to the visible sector via gauge interactions
- Model generates soft SUSY breaking terms in sector → scalar masses, gaugino masses, A-terms →
 determined by the gauge interactions of the messengers
- Typically the gravitino is the LSP
- ullet Example: Long-lived neutralino decaying to a gravitino and a Z-boson $ilde{\chi}^1_0 o ilde{G} + Z$
- Signatures: Non-pointing Jets + missing transverse energy [Bhattacherjee, Mukherjee, Sengupta, 2019], displaced vertices

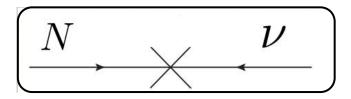
5		
.*	×160	٠.
~		er.

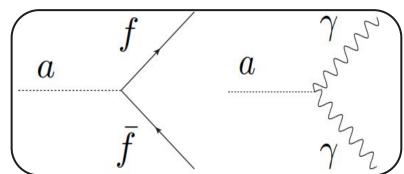

Z decaying to jets: no displacement


Z decaying to jets: transverse displacement of 200-220 cm (second)

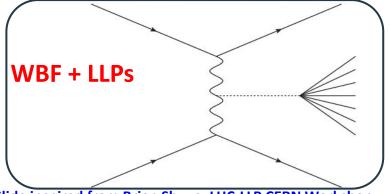
LLP through portals

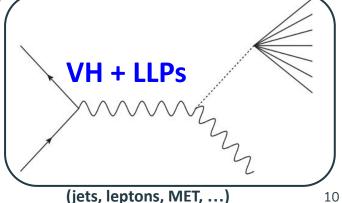
Higgs portal




Vector Portal

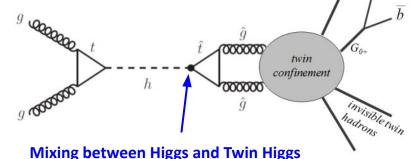
Axion portal


Neutrino portal



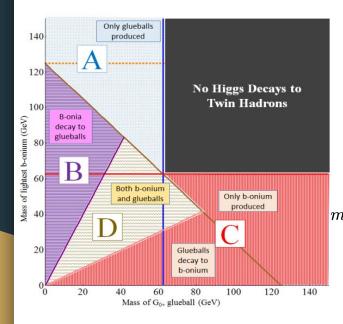
Portal Example 1: The Higgs portals

- LLPs couple predominantly to SM-like Higgs
- SM Higgs field → one of the leading renormalisable portals for new gauge-singlet particles to couple to SM
- Much scope for couplings of the Higgs to BSM physics
- Most striking signatures → exotic Higgs decays to low-mass particles → Useful for trigger and reconstruction → detailed discussions on triggers by Swagata!


Slide inspired from Brian Shuve; LHC-LLP CERN Workshop — April 24, 2017

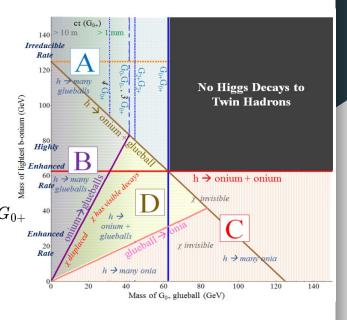
The Higgs portals: Example 1: Minimal Twin Higgs

Additional twin Higgs doublet and an approximately SU(4)-symmetric potential. SM-like Higgs is a
pseudo Goldstone boson of this approximate global symmetry


$$V=\lambda(|\mathcal{H}|^2-f^2/2)^2, \langle\mathcal{H}
angle=f/\sqrt{2}$$

- Twin tops and a twin top Yukawa → numerically very close to the SM top Yukawa
- Twin weak bosons from the gauged SU(2)
- Twin glue → a gauged *SU(3)* symmetry
- Twin bottoms and twin taus
- Twin neutrino from the twin tau doublet

- Br(h \rightarrow twin hadrons) > 10⁻⁴ everywhere that is not kinematically forbidden
- **Twin confinement** works in a similar way for hidden sectors, where twin gluons are confined and hadronise into twin glueballs, analogous to how regular gluons form glueballs in our visible universe arXiv:1501.05310; Craig et al.


The Higgs portals: Example 1: Minimal Twin Higgs

arXiv:1501.05310; Craig et al.

$$\hat{\eta} \equiv ext{lightest} \ [\hat{b} ar{\hat{b}}] \ ext{state}$$

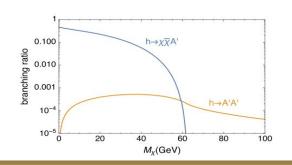
 $m_0 \equiv {
m mass} \ {
m of} \ {
m lightest} \ {
m twin} \ {
m glueball}, G_{0+}$

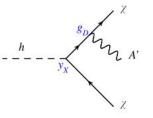
$$egin{aligned} & ext{Region A } m_h > 2m_0, m_h < 2m_{\hat{\eta}}, m_h < m_0 + m_{\hat{\eta}} \ & ext{Region B } m_h > m_0 + m_{\hat{\eta}}, m_{\hat{\eta}} > 2m_0 \ & ext{Region C, either } m_0 + m_{\hat{\eta}} > m_h > 2m_{\hat{\eta}} \ & ext{or } m_0 > 2m_{\hat{\eta}} \ & ext{Region D } m_h > m_0 + m_{\hat{\eta}}, m_{\hat{\eta}} < 2m_0, m_0 > 2m_{\hat{\eta}} \ \end{aligned}$$

For
$$f=3v, c au \sim 18~ ext{m} \left(rac{10~ ext{GeV}}{m_0}
ight)^7$$

Twin sector glueballs give rise to displaced decays on the length scale of the LHC detectors

The Higgs portals: Example 2: Higgs portal to dark QED

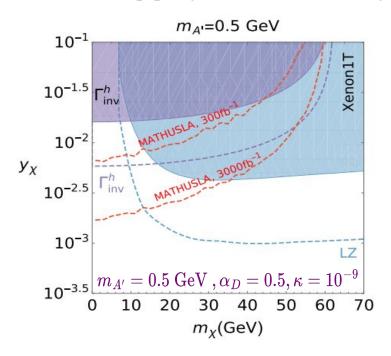

Consider the following Lagrangian for the Higgs portal to dark QED

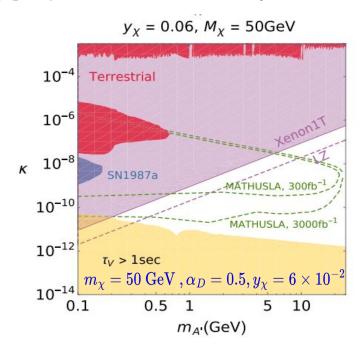

$${\cal L} = ar{\chi}i {\cal D}\chi - m_\chi ar{\chi}\chi + rac{1}{\Lambda}\chi \chi^c (H^\dagger H - v^2/2) + ext{ H.c } - rac{1}{4}F'_{\mu
u}F'^{\mu
u} + rac{1}{2}m^2_{A'}A'_\mu A'^\mu - rac{\kappa}{2}F'_{\mu
u}F^{\mu
u}$$

 χ \equiv Dirac fermion and dark matter candidate \rightarrow couples to SM Higgs via dimension-5 interaction suppressed by $\Lambda \rightarrow$ charged under dark $U(1)_D$ gauge symmetry with V_U gauge boson

$${\it A}_{\mu}^{\ '}$$
 \equiv dark photon, $\ D_{\mu}=\partial_{\mu}+igA'_{\mu}$

 If mixing, κ, between visible and dark photons is small, dark photon will be long-lived and could be via "monodark photon" channel

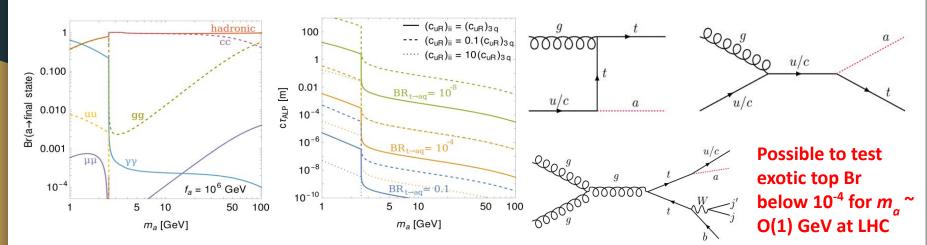



$$c au_{A'}=10^7~{
m cm}~\left(rac{10^{-9}}{\kappa}
ight)^2\left(rac{1~{
m GeV}}{m_{A'}}
ight)$$

Typical dark photon decay length \to longer than any existing and proposed detectors at LHC \to detectors like MATHUSLA in non-forward directions

<u>arXiv:1909.07987; Krovi et al.</u>

The Higgs portals: Example 2: Higgs portal to dark QED



$$lpha_D=g_D^2/(4\pi), y_\chi\equiv rac{v}{\Lambda} ext{ dark yukawa coupling}$$

arXiv:1909.07987; Krovi et al.

Portal Example 2: The ALP portal: Example: ALPs from exotic Top decays

- Focusing on scenarios where ALPs only interact with up-type quarks at tree level
- Relevant EFT is given as $~{\cal L}_{
 m ALP,EFT}=rac{1}{2}(\partial_{\mu}a)(\partial^{\mu}a)-rac{m_a^2}{2}a^2+rac{\partial_{\mu}a}{f_a}(c_{u_R})_{ij}ar{u}_{Ri}\gamma^{\mu}u_{Rj}$ With $c_{_{\it uR}}$ being a Hermitian matrix
- Examples of UV-completions: Dark QCD-like sectors with scalar mediators, Froggatt-Nielsen model

Summary

- LLPs arise in SM as well
- In BSM LLPs arise when (i) Matrix Element is small, (ii) Phase space is small, (iii) Couplings are suppressed by the scale of new physics
- In SUSY, RPV scenarios give rise to interesting LLP signatures including (i) displaced vertices, (ii) backward moving objects
- In GMSB, one also gets interesting LLP signatures including non-pointing jets
- LLPs via portals (Higgs, vector, heavy neutrinos, ALPs) are very interesting to look at and are well-motivated
- LLPs mediated via Higgs portals include Hidden Valley Models like Twin Higgs, Higgs portal to dark QED, etc. These give rise to many interesting and rich signatures
- ALP portals give rise to striking signatures including exotic top decays

Backup slides

SUSY Example 3: Split SUSY

- Split-SUSY → hierarchy problem addressed by fine-tuning
- Scales of fermionic superpartners (gauginos, Higgsinos) ~ TeV; Scalar superpartners (squarks, sleptons) ~ much heavier (typically around 10¹⁰ 10¹² GeV)
- Heavy scalar masses → suppresses certain decay channels → relatively long lifetimes for fermionic superpartners
- ullet Example: Long-lived gluino $\, ilde{g}
 ightarrow q ar{q} \chi_1^0$
- ullet Lifetime is of the order: $\,c aupprox 100 \mu m \Big(rac{M_{ ilde{q}}}{10^3~{
 m TeV}}\Big)^4 \Big(rac{{
 m TeV}}{M_{ ilde{g}}}\Big)^5$
- Signatures: Non-pointing Jets + missing transverse energy, backward moving jets + missing transverse energy, displaced vertices, etc

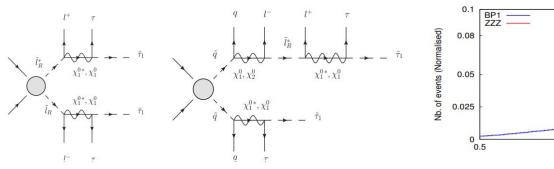
SUSY Example 4: vCMSSM model

Assuming Lepton number conservation, MSSM superpotential extended by

$$W^R_
u = y_
u \hat{H}_u \hat{L} \hat{
u}^c_R$$

 y_{ν} = neutrino Yukawa, L, $H_{u'}$ ν_R are respectively the left-handed lepton, Higgs, right-handed neutrino superfields

- Small neutrino Yukawa couplings O(10⁻¹³) from neutrino oscillations + Planck + lensing + Baryon Acoustic Oscillation
- Sneutrino not thermalised in early universe but produced from decay of "MSSM-LSP" before or after
 Freeze-out


$$\Omega_{\hat{
u}_R}^{
m FO}=rac{m_{\hat{
u}_R}}{m_{ ilde{ au}_1}}\Omega_{ ilde{ au}_1}, \Omega_{\hat{
u}_R}^{
m FI}h^2\simeq rac{1.09 imes10^27}{g^{*3/2}}m_{ ilde{
u}_R}\sum_i rac{g_i\Gamma_i}{m_i^2}$$

 $g^* \approx 106.75$: average number of effective d.o.f.s contributing to thermal bath

 $\Gamma_i, m_i, g_i \equiv \text{respectively decay to } \hat{\nu}_R, \text{ mass, and d.o.f. of the } i^{th} \text{superparticle}$

SUSY Example 4: vCMSSM model

- Consider stau as "NLSP" \rightarrow lives from second to minute \rightarrow decays outside CMS/ATLAS
- LHC signatures: heavy stable charged particles (HSCP)
 Signatures: 2 stable charged tracks, 2 OSSF leptons, 1 τ-tagged jet, missing transverse energy
 2 stable charged tracks, 2 OSSF leptons, 2 τ-tagged jets, missing transverse energy

- Constraints from BBN: An LLP with hadronic decay modes can affect the Big Bang Nucleosynthesis →
 can cause overproduction of light nuclei like deuterium → we require stau NLSP lifetime doesn't
 exceed ~ 100 seconds
- Stable stau behaves like slow muons, □ = p/E < 1 → use ionisation properties and T.O.F.
 measurement to distinguish from muons → also use kinematic distributions
 SB, Bélanger, Ghosh, Mukhopadhyaya; 2018

8.0

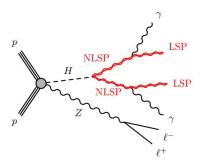
0.9 0.95 1

SUSY Example 5: Anomaly-mediated Supersymmetry Breaking (AMSB)

- Anomaly-mediated Supersymmetry Breaking (AMSB) → SUSY breaking mediated through anomalies in gauge interactions
- The gaugino masses are proportional to the beta-functions times the gravitino mass

$$M_i = rac{eta_i}{g_i} m_{3/2}, ext{ where } eta_i = rac{g_i^3}{16\pi^2} b_i$$

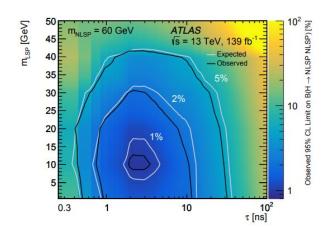
• The soft-breaking scalar terms are

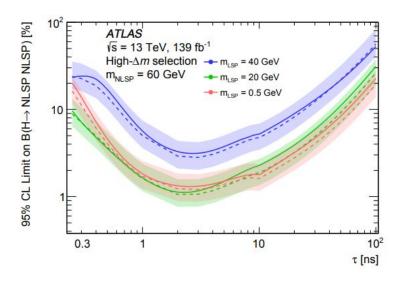

$$m_{ ilde{f}}^2 = -rac{1}{4}\{rac{d\gamma}{dg}eta_g + rac{d\gamma}{df}eta_f\}m_{3/2}^2$$

The typical search channel is

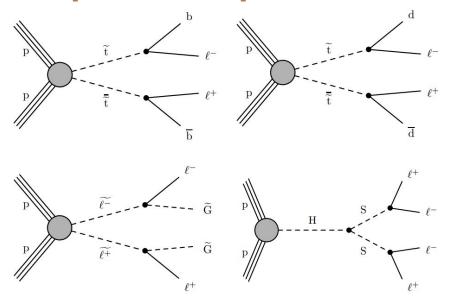
$$ilde{\chi}^{\pm}
ightarrow ilde{\chi}^0 + \pi^{\pm}$$

 The signature is disappearing charged track where the chargino and the neutralino are nearly degenerate

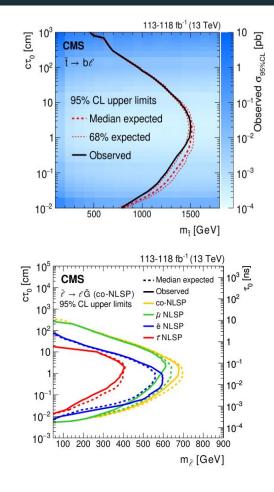

Displaced photon



Signature: Displaced photon search


Possible scenario in GMSB: $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + \gamma$, where $\tilde{\chi}_2^0$ is the NLSP

arXiv: 2209.01029 [ATLAS]



Displaced leptons

 $ilde{t} o b(d) \ell \; [ext{RPV decay}], ilde{\ell}^\pm o \ell^\pm + ilde{G} \; [ext{GMSB}]$

arXiv: 2110.04809 [CMS]

