Unconventional triggers for BSM searches in CMS

Frontiers in Particle Physics

CHEP, IISc, Bangalore

August 2024

Swagata Mukherjee (IIT Kanpur)

On behalf of the CMS collaboration

CMS trigger system (Run3)

Proton-proton collision at LHC

Up to 40 MHz

Level 1 Trigger (L1)

Coarse granularity, Only muon systems and calorimeters, hardware-based (ASIC/FPGA)

ASIC=Application Specific Integrated Circuit FPGA=Field Programmable Gate Array

High Level Trigger (HLT)

Full granularity, all subsystems are used, software-based (CPU/GPU)

Standard stream

Quick offline reconstruction, full event information

Parking stream

Delayed^[*] offline reconstruction, full event information

Scouting stream

No offline reconstruction, reduced event information

CMS trigger system (Run3)

Standard stream

Quick offline reconstruction, full event information

Parking stream

Delayed [*] offline reconstruction, full event information

Scouting stream

No offline reconstruction, reduced event information

- Majority of high level triggers (often called HLT paths) belong to this category.
- Few hundred HLT paths collecting data for varied purposes
 - Alignment and calibration of detector components
 - Generic HLT paths used in various physics analysis (precision measurements, BSM searches)
 - O Dedicated HLT paths for targeted physics analysis
 - Example: dedicated **HLT paths for LLP searches**

Dedicated HLT paths to catch any anomalous event which could be BSM (anomaly finder)

rysis

searches this tal

CMS trigger system (Run3)

Standard stream

Quick offline reconstruction, full event information

Parking stream

Delayed [*] offline reconstruction, full event information

Scouting stream

No offline reconstruction, reduced event information

- The parking strategy changes (~yearly) according to physics needs. Currently CMS has **dedicated parking triggers for LLP searches**.
- Scouting data has been useful for LLP searches.
 - Example: Longlived dark-photon search using muon scouting data https://arxiv.org/abs/2112.13769 (published in JHEP)
- ☐ I will barely discuss scouting / parking in this talk due to lack of time (bring it up in discussion session if you are interested)

Scope of the talk

Level 1 Trigger (L1)

Coarse granularity, Only muon systems and calorimeters, hardware-based (ASIC/FPGA)

High Level Trigger (HLT)

Full granularity, all subsystems are used, software-based (CPU/GPU)

Standard stream

Quick offline reconstruction, full event information

Dedicated HLT for LLP search & anomaly finder Focus of this talk

- L1 and HLT both will be discussed in the context of **LLP** search and anomaly finding.
 - Among many LLP triggers, will discuss a few (the newest addition to trigger menu, and some personal bias).
- Will focus on Run3 (i.e the ongoing data-taking at LHC)

The need for anomaly detector @L1 trigger

- ☐ To find BSM in CMS experiment, we need a trigger.
- ☐ If we knew the exact signature we are looking for, we'd build a trigger for it!
- ☐ In absence of that, what else can we do?

Anomaly detector @L1 trigger: general idea

- ☐ To find BSM in CMS experiment, we need a trigger.
- ☐ If we knew the exact signature we are looking for, we'd build a trigger for it!
- ☐ In absence of that, what else can we do?

- Use of ML to learn the features of typical standard model events
- Then, pick events that are not typical, using **autoencoder** (AE)
- ☐ Train AE on typical events (ZeroBias data) and use reconstruction error (loss) as a metric for anomalous-ness

$$\mathcal{L} = || \mathbf{X} - \mathbf{X}' ||$$

Anomaly detector @L1 trigger in CMS

Two complementary approaches

Anomaly eXtraction Online Level-1 Trigger algorithm

Inputs: P_T , η , ϕ of Jets(x10), e/γ (x4), μ (x4), and MET (from Calo layer-2 and Global Muon Trigger)

Ref: https://cds.cern.ch/record/2876546

CICADA Calorimeter Image Convolutional **Anomaly Detection Algorithm**

Inputs: Low-level information (from Calo layer-1) in image format.

Ref:

https://cds.cern.ch/record/2879816

ML@L1 trigger becoming important. Tools for ML@FPGA developed.

- Neural Nets → HLS4ML (documentation)
- Boosted Decision Trees → Conifer (github, paper)

An event selected by AXOL1TL

SUEP?

Emerging jet?

Or just normal QCD?

Displaced jet

- ☐ Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet
 triggers to capture various
 detector signatures,
 depending of LLP's lifetime
 (decay length).
 - tracking-based
 - ECAL-based
 - ☐ HCAL-based
 - Muon system-based

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet triggers to capture various detector signatures, depending of LLP's lifetime (decay length).
 - tracking-based
 - ECAL-based
 - HCAL-based
 - Muon system-based

Tracking-based displaced jet trigger

- ☐ Trigger implemented in Run2.
 - Displaced-jets search with full Run2 data
 https://arxiv.org/abs/2012.01581 (Published in PRD)
 - □ Search is sensitive to a large variety of LLP models, for LLP masses from ~10 GeV to ~3 TeV.
- □ Run3 trigger improved. Better than Run2 by a factor of ~5-10
- □ L1 Strategy: HT>430 GeV or soft-muons (pT>6 GeV) and HT>240 GeV.
 - ☐ Triggering on soft muon enables lower HT thresholds and is sensitive to signatures with b-jets in the final state
- ☐ HLT strategy: Reconstruct displaced jets with displaced tracks. Prompt track veto
- □ Early Run3 result already public, <u>CMS PAS EXO-23-013</u> (2022 data)

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet triggers to capture various detector signatures, depending of LLP's lifetime (decay length).
 - tracking-based
 - ECAL-based
 - HCAL-based
 - Muon system-based

ECAL-based displaced jet trigger in CMS

ECAL timing is a powerful handle for LLP search.

ECAL measures arrival time of objects with precision of ~200 ps (for energy deposits >50 GeV)

- **L1 Strategy**: HT>430 GeV or L1 Tau pT>120 GeV and HT>360 GeV
 - L1 Tau seeds enable lower HT thresholds.
 - As LLPs become more massive and displaced, the resulting jets become collinear and can look like τ leptons
- ☐ HLT strategy:
 - Nominal jets (track matched to the jet) or trackless jets (no matched track).
 - □ Use ECAL timing information for jet timing.
- Key challenge: HLT rates depend on ECAL crystal transparency

Ref: https://cds.cern.ch/record/2865844

Exciting searches ongoing!

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet triggers to capture various detector signatures, depending of LLP's lifetime (decay length).
 - tracking-based
 - ECAL-based
 - ☐ HCAL-based
 - Muon system-based

HCAL-based LLP triggers

HCAL depth segmentation + HCAL timing → excellent for LLP Exploit these capabilities in L1 triggers (and subsequently in HLT)

2 scenarios considered @L1: Time-flagged & Depth flagged

- Use HCAL time information at the L1 trigger level to identify delayed jets (>6 ns). Prompt veto applied.
- Trigger on minimal energy deposits in the first two layers and high energy deposits in the later layers

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet triggers to capture various detector signatures, depending of LLP's lifetime (decay length).
 - tracking-based
 - ECAL-based
 - HCAL-based
 - Muon system-based

Muon system based displaced jet trigger

- Signature was studied in offline analysis already in Run2, but no dedicated trigger strategy.
- ☐ Analysis with full **Run2** data:
 - https://arxiv.org/abs/2107.04838(endcap-only) (published in PRL)
 - https://arxiv.org/abs/2402.01898 (endcap+barrel) (submitted to PRD)
 - **■** Both triggered with MET.
- ☐ In Run3, improved the trigger strategy (in endcaps).

L1 strategy: Count hits in a given muon chamber. Event accepted if hit multiplicity is greater than some threshold (configurable).

HLT strategy: Reconstructed hits clustered using Cambridge-Aachen (CA) algorithm. Some selections applied on cluster properties.

Ref: https://cds.cern.ch/record/2842376

Due to limited time, I could not discuss other triggers and analyses like this one: https://cds.cern.ch/record/2868338/files/EXO-23-014-pas.pdf

Where will we see the jets?

Calorimeters and tracker, right?

Eh, it depends

