XXV DAE-BRNS High Energy Physics Symposium 2022

Contribution ID: 380

Type: Talk

Estimation of ³²Si and ³²P background rate in CDMS II experiment

Tuesday 13 December 2022 12:00 (15 minutes)

The Cryogenic Dark Matter Search experiment II (CDMS II) was a direct dark matter search experiment that operated between the years 2003 to 2012 at Soudan Underground Laboratory, Minnesota, USA [1]. The experiment deployed a total of 19 germanium (Ge) and 11 silicon (Si) cryogenic detectors each having a mass of $\sim 250~{\rm g}$ and $\sim 100~{\rm g}$ respectively, in a 5 tower configuration, at a temperature of ~ 40 mK. The detection principle of this experiment involved measuring the recoil energy of the target mass (Ge or Si) after a dark matter particle elastically scatters off it. The detector measured charge and phonon signals from an interaction with the target. The spin-independent interaction cross-section of a dark matter particle with a nucleon is of the order of $\sim 10^{-41}$ cm² for the dark matter mass ≤ 10 GeV/ c^2 . The predicted dark matter event rate in a germanium target is ~ 0.05 /kg-day for the nuclear recoil energy in the order of a few keV [2]. So, the interaction of dark matter particles is very rare and occurs at a rate that is well below the background radiation rate. Hence the identification and rejection of the backgrounds in these experiments are crucial. 32 Si is an isotope of Si which is present in the Si detectors from the time of fabrication [3]. It emits β particles which act as a source of background in the CDMS II experiment. The endpoint energies of the β spectrum are 227 keV for ${}^{32}\text{Si} \rightarrow {}^{32}\text{P}$ and 1710 keV for ${}^{32}\text{P} \rightarrow {}^{32}\text{S}$. The β particles create electron recoils in the detector. Our analysis goal is to estimate the decay rate of ³²Si and ³²P in the Si detectors using CDMS II data. We will present the recent results towards obtaining the ³²Si and ³²P. We will be using the likelihood method to calculate the ³²Si and ³²P decay rate. Our analysis is important for the SuperCDMS SNOLAB experiment, the successor of CDMS and other experiments that uses Si detectors [4] to look for rare events.

References:

- [1] Gianfranco Bertone, Dan Hooper, and Joseph Silk. Physics Reports 405 (5) (2005) 279-390.
- [2] J.D. Lewin and P.F. Smith. Astroparticle Physics 6 (1996) 87-112.
- [3] John L. Orrell et al. Astroparticle Physics 99 (2018) 9-20.
- [4] R. Agnese et al. Physical Review D 95 (8) (2017) 082002.

Session

Astroparticle Physics and Cosmology

Author: CHAUDHURI, Mouli

Co-author: COLLABORATION, SuperCDMS

Presenter: CHAUDHURI, Mouli

Session Classification: WG1-Astroparticle Physics and Cosmology