XXV DAE-BRNS High Energy Physics Symposium 2022

Contribution ID: 290

Type: Poster

Study of chiral dependent charge and heat conductivity and their associated numbers in thermal QCD

Friday 16 December 2022 14:00 (1 hour)

As the strength of the magnetic field () becomes weak, novel phenomena, similar to the Hall effect in condensed matter physics emerges both in charge and heat transport in a thermal QCD medium with a finite quark chemical potential (μ) . So we have calculated the transport coefficients in a kinetic theory within a quasiparticle framework, wherein we compute the effective mass of quarks for the aforesaid medium in a weak magnetic field (B) limit $(|eB| < \operatorname{QCD} \operatorname{up}$ to one loop, which depends on and differently to left- (L) and right-handed (R) chiral modes of quarks, lifting the prevalent degeneracy in L and R modes in a strong magnetic field limit (|| >>²). Another implication of weak is that the transport coefficients assume a tensorial structure: The diagonal elements represent the usual (electrical and thermal) conductivities: σ_{Ohmic} and κ_0 as the coefficients of charge and heat transport, respectively and the off-diagonal elements denote their Hall counterparts: σ_{Hall} and κ_1 , respectively. It is found in charge transport that the magnetic field acts on L- and R-modes of the Ohmic-part of electrical conductivity in opposite manner, viz. σ_{Ohmic} for L- mode decreases and for R- mode increases with whereas the Hall-part σ_{Hall} for both L- and R-modes always increase with . In heat transport too, the effect of the magnetic field on the usual thermal conductivity (κ_0) and Hall-type coefficient (κ_1) in both modes are identical to the abovementioned effect of on charge transport coefficients. We have then derived some coefficients from the above transport

coefficients, namely Knudsen number (Ω is the ratio of the mean free path to the length scale of the system) and Lorenz number in Wiedemann-Franz law. The effect of on Ω either with κ_0 or with κ_1 for both modes are identical to the behavior of κ_0 and κ_1 with \boxtimes . The value of Ω is always less than unity for the entire temperature range, validating our calculations. Lorenz number ($\kappa_0/\sigma_{\text{Ohmic}}$) and Hall-Lorenz number ($\kappa_1/\sigma_{\text{Hall}}$) for *L*-mode decreases and for *R*-mode increases with a magnetic field. It also does not remain constant with *T*, except for the *R*-mode Hall-Lorenz number where it remains almost constant for smaller values of *B*.

Session

Heavy Ions and QCD

Author: PANDAY, pushpa
Co-author: Prof. PATRA, Binoy Krishna (Indian Institute of Technology Roorkee)
Presenter: PANDAY, pushpa
Session Classification: Poster - 4