
Relativity tutorial - Saturday 11th of July 2020
Any queries contact me at libby@iitm.ac.in

1. Perform a Galilean transformation on the wave equation. Find the general solution to
the resulting partial differential equation. Interpret the solutions.

Answer: The Galilean transformation in the x direction is x′ = x − vt and t′ = t.
Therefore,

∂

∂x
=

∂x′

∂x

∂

∂x′
+
∂t′

∂x

∂

∂t′
=
∂

∂x′

∂

∂t
=

∂x′

∂t

∂

∂x′
+
∂t′

∂t

∂

∂t′
= −v∂

∂x′
+
∂

∂t′

⇒ ∂2

∂x2
=

∂2

∂x′2

∂2

∂t2
= v2 ∂

2

∂x′2
− 2v

∂2

∂x′∂t′
+
∂2

∂t′2

⇒
[(

1− v2

c2

)
∂2

∂x′2
+ 2

v

c2

∂2

∂x′∂t′
− 1

c2

∂2

∂t′2

]
φ(x′, t′) = 0 .

Postulate a solution f(x′ −mt′)(
1− v2

c2

)
+ 2m

v

c2
−m2 1

c2
= 0 (1)

⇒ m =
2v ±

√
4v2 + 4 (c2 − v2)

−2
= ±(c∓ v) . (2)

(3)

Speed changes with the frame as if wave in a fixed medium a.k.a. the aether.

2. [Halzen and Martin: 6.9] Maxwell’s equations of classical electrodynamics are, in vacuo,

∇ · E = ρ, ∇× E + ∂B
∂t

= 0

∇ ·B = 0, ∇×B− ∂E
∂t

= j ,

in rationalized Heaviside-Lorentz units. Show that these equations are equivalent to the
following covariant equation for Aµ:

�Aµ − ∂µ (∂νA
ν) = jµ ,

with jµ = (ρ, j), and where Aµ = (φ,A), the four-vector potential, is related to the
electric and magnetic fields by

E = −∂A
∂t
−∇φ , B = ∇×A .
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Ans: First we write Ampere’s law in terms of φ and A

∇×∇×A− ∂

∂t

(
−∂A
∂t
−∇φ

)
= j

⇒ −∇2A + ∇ (∇ ·A) +
∂2A

∂t2
+
∂

∂t
∇φ = j ∵∇×∇×A = −∇2A + ∇ (∇ ·A)

⇒ �A + ∇
(
∂φ

∂t
+ ∇ ·A

)
= j ∵ � =

∂2

∂t2
−∇2

⇒ �Ai − ∂i (∂νAν) = ji , (4)

where ∂µ =
(
∂
∂t
,−∇

)
and i = 1, 2, and 3. Next we write Gauss’ Law in terms of Aµ

∇ ·
(
−∂A
∂t
−∇φ

)
= ρ

⇒ �φ− ∂2φ

∂t2
− ∂

∂t
∇ ·A = ρ

⇒ �φ− ∂

∂t

(
∂φ

∂t
+ ∇ ·A

)
= ρ

⇒ �A0 − ∂0 (∂νA
ν) = j0 , (5)

so combining Eqs. (3) and (4) one gets

�Aµ − ∂µ (∂νA
ν) = jµ ,

as required. End of this part of the question.

Further, show that in terms of the the antisymmetric field strength tensor

F µν = ∂µAν − ∂νAµ ,

Maxwell’s equations take the compact form ∂µF
µν = jν and that ∂νj

ν = 0, follows as a
natural compatibility condition.

Ans: So

∂µF
µν = ∂µ (∂µAν − ∂νAµ)

= �Aν − ∂ν (∂µA
µ)

= jν ,

from the first part of the question. Then,

∂νj
ν = � (∂νA

ν)−� (∂µA
µ) = 0

as required.
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3. The infinitesimal Lorentz transformation is given by

x′µ = xµ + εµνxνδη ,

where εµν is an antisymmetric tensor and δη is an infintesimal increment of rapidity.
Consider ε01 = 1 and ε12 = 1. Comment on the result.

Ans: We can rewrite the infinitesimal transformation as

x′µ = (δµα + εµνgναδη)xα

⇒ x′ =

I4 +


0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 δη

x

=

I4 +


0 −1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

 δη

x

=


1 −δη 0 0
−δη 1 0 0

0 0 1 0
0 0 0 1


As cosh δη = 1 and − sinh δη = −δη to O ((δη)2) this is equivalent to an infinitesimal
boost.

Similarly ε12 = 1 leads to rotation about z axis by δη. So all boosts and rotations can be
generated from the εµν i.e. Lorentz group.

4. [Perkins 1.3] The values of mc2 for the pion π+ and muon µ+ are 139.57 MeV and
105.66 MeV respectively. Find the kinetic energy of the muon in the decay π+ → µ+ +νµ
assuming the neutrino is massless.

Solution Four-momentum conservation gives:

pπ = pµ + pν ,

where pπ, pµ and pν are the four-momenta of the pion, muon and neutrino, respectively.
Rearranging this expression one gets:

(pπ − pµ)2 = p2
ν = 0 ∵ p2 = m2 and m2

ν = 0

p2
π + p2

µ − 2pπpµ = 0

m2
π +m2

µ − 2Eµmπ = 0 ,

because pπ = (mπ, 0) and pµ = (Eµ, ~pµ) in the rest frame of the pion. This gives

Eµ =
m2
π +m2

µ

2mπ
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so that the kinetic energy T is

T = Eµ −mµ =
m2
π +m2

µ − 2mπmµ

2mπ

=
(mπ −mµ)2

2mπ

= 4.12 MeV .[5 marks]

End of this part of the solution

For a neutrino of finite but very small mass mν show that, compared with the case of the
massless neutrino, the muon momentum would be reduced by a fraction

∆p

p
= −

m2
ν

(
m2
π +m2

µ

)(
m2
π −m2

µ

)2 ' −
4m2

ν

104
,

where µν is in MeV.

Solution Consider the value of the momentum:

|~pµ| =
√
E2
µ −m2

µ

where

Eµ =
m2
π +m2

µ −m2
ν

2mπ

when mν is finite. Therefore,

|~pµ| =

√
(m2

π +m2
µ −m2

ν)
2 − 4m2

πm
2
µ

4m2
π

=

√
m4
π +m4

µ +m4
ν − 2m2

πm
2
µ − 2m2

πm
2
ν − 2m2

νm
2
µ

4m2
π

≈

√
(m2

π −m2
µ)2 − 2m2

ν(m
2
π +m2

µ)

2m2
π

,

where in the last step the term of the order m4
ν are considered negligible and discarded.

With this expression we can write the ratio:

|~pµ(mν)|
|~pµ(mν = 0)|

=

√
1−

2m2
ν(m

2
π +m2

µ)

(m2
π −m2

µ)2

and
∆p

p
≈ −

m2
ν

(
m2
π +m2

µ

)(
m2
π −m2

µ

)2 = −4m2
ν

104
,

where the mass of mν is in MeV and we have used
√

1− x = 1− 1
2
x , x << 1.

End of this part of the solution
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5. [Perkins 1.4] Deduce an expression for the energy of a γ-ray from the decay of a neutral
pion, π0 → γγ, in terms of the mass m, energy E and velocity βc of the pion and the
angle of emission θ (relative to the direction of motion) in the pion rest frame.

Solution: The four-momenta of the two photons in the rest-frame of the pion are:

pγ 1 (2) =
(
E∗1 (2), ~p

∗
1 (2)

)
=
mπ

2
(1, (−) sin θ, 0, (−) cos θ) ,

where we have chosen the xz plane to be that in which the two photons are. We use the
Lorentz transformation to get the energies in the the laboratory frame

E1 = γ
(
E∗1 + βp∗z,1

)
=
γmπ

2
(1 + β cos θ) =

E

2
(1 + β cos θ)

E2 = γ
(
E∗2 + βp∗z,2

)
=
γmπ

2
(1− β cos θ) =

E

2
(1− β cos θ) ,

where we have used γ = E/mπ in the last step. End this part of the solution.

Show that if the pion has spin zero, so that the angular distribution is isotropic, the
laboratory energy spectrum of the γ-rays will be flat extending from E(1 + β)/2 to
E(1− β)/2.

Solution: If the distribution is isostropic it means that dN
dΩ

is a constant, where N is
the number of photons and Ω is the solid angle. Integrating over the azimuthal angle φ,
dΩ = 2πd cos θ, hence

dN

d cos θ
=

dN

dE

dE

d cos θ
= constant⇒ dN

dE
= constant,

because dE
d cos θ

= ±βE
2

= constant. The maximum and minimum energies are when
cos θ = ±1, so the maximum and minimum are E(1 + β)/2 to E(1 − β)/2, respectively.
End of this part of the solution.

Find an expression for the disparity D (the ratio of energies) of the γ-rays and show that
D > 3 in half the decays and D > 7 in one quarter of them.

Solution The disparity D is

D =
1± β cos θ

1∓ β cos θ
,

where the sign depends on whether θ < π/2 or not. As the distribution is uniform in
cos θ we just need to consider one region i.e. θ < π/2, which is equivalent to cos θ > 0.
Also the minimum β with which you can get any events with D > 3 is 0.5, so to get many
events as is the case here you need β ∼ 1. Therefore, the disparity expression becomes

D ≈ 1 + cos θ

1− cos θ

so D > 3 and D > 7 corresponds to cos θ > 0.5 (half the events) and cos θ > 0.75 (a
quarter of the events), as required. End of this part of the solution
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6. Question: Charged pions decay, almost 100%, by the weak process π → µν. Neglecting
the mass of the neutrino the energy of the neutrino in the rest frame of the pion is given
by

E∗ν =
m2
π −m2

µ

2mπ

.

High-energy beams of muon neutrinos are produced by allowing a tightly focused beam
of charged pions to decay in a long evacuated tube, followed by a length of absorber to
remove the unwanted pions and muons. By using an appropriate Lorentz transformation,
show that the energy Eν of the neutrino in the laboratory frame with angle θν with respect
to the pion beam direction is given by

Eν =
E∗ν

γ (1− β cos θν)
,

where β and γ are the Lorentz parameters of the pion of energy Eπ in the laboratory
frame.

Answer: The LT for the energy between the lab and rest frames of the pion is

E∗ν = γ(Eν − βpzν) ,

assuming the pion is moving in the z direction. Now pzν = Eν cos θν , so

Eν =
E∗ν

γ (1− β cos θν)
. [0.5 marks]

Question: At what value of θν is Eν maximum?

Answer: The denominator will be minimised, hence Eν maximised, when cos θν = 1 ⇒
θν = 0 [0.5 marks].

Question: Show that the maximum value of Eν depends linearly on Eπ for Eπ � mπ.
Answer: The expression for Emax

ν is

Emax
ν =

E∗ν
γ (1− β)

=
E∗ν

γ
(

1−
√

1− 1
γ2

)
' E∗ν

γ
(

1−
[
1− 1

2γ2

]) ∵ 1

γ2
� 1 if Eπ � mπ

' 2E∗νγ

' 2E∗νEπ
mπ

∵ γ =
Eπ
mπ

∝ Eπ [0.5 marks].
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Question: For highly relativistic pions (γ � 1), the neutrinos tend to be produced at
very small angles. Use the small angle approximation and an appropriate approximation
for β to show that

Eν '
2E∗νγ

1 + γ2θ2
ν

.

Answer: We will use cos θ ' 1− θ2ν
2

as the small angle approximation

Eν '
E∗ν

γ
(

1−
√

1− 1
γ2

[
1− θ2ν

2

])
' E∗ν

γ
(

1−
[
1− 1

2γ2

] [
1− θ2ν

2

])
' E∗ν

γ
(

1
2γ2

+ θ2ν
2
− θ2ν

4γ2

)
' 2E∗νγ

1 + γ2θ2
ν

,

where the third term in the denominator is dropped because it is very much smaller than
the other two terms [0.5 marks].

Question: On the same diagram, sketch the values of Eν for θν = 0 and θν = 15 mrad,
as Eπ varies between 5 and 25 GeV.

Answer: We have already shown for θν = 0 there is a linear relationship between Eν and
Eπ. The constant of proportionality is

E∗ν
2mπ

=
m2
π −m2

µ

m2
π

= 0.438 .

Therefore, for Eπ in the range 5 to 25 GeV, Eν(θν = 0) varies linearly between 2.2 and
11.0 GeV.

For θν = 0.015 mrad, we have

Eπ (GeV) 5 10 15 20 25
γ 35.7 71.4 107.1 142.9 178.5

2γ
1+(0.015)2γ2

55.5 66.5 59.8 51.1 43.7

Eν (GeV) 1.7 2.0 1.8 1.6 1.3

The plot is shown in Fig. 1 [1 mark].

Question: Comment on the result.

Answer: The spread of Eν for off axis (θν = 0.015) is much less than for the on-axis
(θν = 0). For a neutrino oscillation experiment you need to tune the value of L/Eν , where
L is the distance from the beam source to the detector, to be most sensitive to ∆m2 and
sin2 2θ. The parameter L is easy to control but Eν is less so as Eπ has a spread. However,
by building the detector slightly off the beam axis direction the Eν spread becomes less
pronounced. The T2K and Noνa experiments employ this technique. [0.5 marks]
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Figure 1: Eν as a function of Eπ for (solid line) θν = 0 and (dashed line) θν = 0.015 rad.

7. Complete the calculation of dΓ
d|pe| and Γ for muon decay. Use the result for Γ to calculate

gW . (You will need to use the measured value of the muon lifetime and the muon and
W masses from the PDG. Also, recall we are working in natural units.) Use the re-
sult to support the statement ‘the weak interaction is stronger than the electromagnetic
interaction’.

Solution: In class we showed that

Γ =

∫ mµ/2

0

4πd|p4|
16(2π)4mµ

∫ mmu/2

µ/2−|p4|
d|p2|

(
gw
MW

)4

m2
µ|p2| (mµ − 2|p2|) ,
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which leads to

dΓ

d|p4|
=

(
gW
MW

)4
mµ

8(2π)3

[
mµ
|p2|2

2
− 2

3
|p2|3

]mµ/2
mµ/2−|p4|

=

(
gW
MW

)4
mµ

8(2π)3

(
m3
µ

8
−
m3
µ

12
−mµ

(mµ/2− |p4|)2

2
+

2

3
(mµ/2− |p4|)3

)
=

(
gW
MW

)4
mµ

8(2π)3

(
m3
µ

24
−
(
m2
µ

4
−mµ|p4|+ |p4|2

)(
mµ

2
− mµ

3
+

2

3
|p4|
))

=

(
gW
MW

)4
mµ

8(2π)3

(
m3
µ

24
−
(
m3
µ

24
−
m2
µ|p4|
6

+
mµ|p4|2

6
+
m2
µ|p4|
6

− 2mµ|p4|2

3
+

2

3
|p4|3

))
=

(
gW
MW

)4 m2
µ|p4|2

2(4π)3

(
1− 4|p4|

3mµ

)
⇒ Γ =

(
gW
MW

)4 m2
µ

2(4π)3

∫ µ/2

0

|p4|2
(

1− 4|p4|
3mµ

)
d|p4|

=

(
gW
MW

)4 m2
µ

2(4π)3

[
|p4|3

3
− |p4|4

3mµ

]mµ/2
0

=

(
gW
MW

)4 m2
µ

2(4π)3

(
m3
µ

24
−
m3
µ

48

)
=

(
mµgW
MW

)4
mµ

12(8π)3

⇒ τ =
~
Γ

=

(
MW

mµgW

)4
12(8π)3~
mµc2

⇒ gW =
MW

mµ

(
12(8π)3~
τmµc2

) 1
4

=
80.38

0.106

(
12(8π)3 × 6.58× 10−25

2.20× 10−6 × 0.106

) 1
4

= 0.65 .

In rationalized units αW = g2
W/4π ≈ 1/30 i.e. greater than α. It is only the massive

propagator that makes it weak c.f. electroweak unification.

8. Calculate the extrema of the Dalitz plot then find a relationship for the minimum and
maximum values of one Dalitz plot coordinate m2

ij if another is known. (The kinematics
review in the PDG is a useful reference for this question.)

Answer: Recall that in the rest frame of M the Dalitz variables:

m2
ij = (pi + pj)

2 = (P − pk)2 = M2 +m2
k − 2P · pk = M2 +m2

k − 2MEk .

Hence, the maximum of value of mij (mij,max) coincides with the minimum value of Ek,
which is mk when it is rest. Therefore,

m2
ij,max = M2 +m2

k − 2Mmk = (M −mk)
2.

Similarly the maximum value of Ek will correspond to the minimum mij. This occurs
when k is moving opposite to i and j when they are all collinear. This is analogous to

9



two-body decay into particles of mass (mi +mj) and mk, which gives

Ek,max =
M2 +m2

k − (mi +mj)
2

2M
,

Therefore,

m2
ij,min = M2 +m2

k − 2M
M2 +m2

k − (mi +mj)
2

2M
= (mi +mj)

2 .

For an arbitrary m12 you can figure out the boundary by considering the extremes which
are when 1 or 2 have their maximum momentum. See the figure below.

2
1
3

2
3

1

It is convenient to work in the rest frame of the two particles of fixed rest mass (Jackson
frame) so for fixed m2

12 the momentum in this frame are p1 = −p2 and P = p1 +p2 +p3 =
p3. Note that the initial particle of mass M is no longer at rest. So we can write

m2
12 = (P − p3)2 = (E − E3)2 =

(√
M2 + |p3|2 +

√
m2

3 + |p3|2
)2

which can be rearranged to give

|p3|2 =
1

4m2
12

[
m2

12 − (M −m3)2
] [
m2

12 − (M +m3)2
]

=
1

4m2
12

λ(m2
12,M

2,m2
3) ,

where λ(x, y, z) = x2+y2+z2−2xy−2xz−2yz. We can find the momentum of |p1| = |p2|
using the two-body momentum in the rest frame of a particle mass m12 to masses m1 and
m2

|p1|2 = |p2|2 =
1

4m12

[
m2

12 − (m1 −m2)2
] [
m2

12 − (m1 +m2)2
]

=
1

4m2
12

λ(m2
12,m

2
1,m

2
2) .
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Now we consider m2
23 in this frame

m2
23 = (p2 + p3)2 = m2

2 +m2
3 + E2E3 − p2 · p3

m2
23,± = m2

2 +m2
3 + E2E3 ± |p2||p3|

where m23,+ (m23,−) are the maximum and minimum values. Therefore, using the invari-
ant to write

E3 =
1

2m12

(
M2 −m2

12 −m2
3

)
and

E2 =
1

2m12

(
m2

12 +m2
2 −m2

1

)
,

we get

m23,± = m2
2+m2

3+
1

4m2
12

[(
m2

12 +m2
2 −m2

1

) (
M2 −m2

12 −m2
3

)
±
√
λ(m2

12,M
2,m2

3)λ(m2
12,m

2
1,m

2
2)

]
.

9. Calculate the relative rate of B+ → τ+ντ to B+ → µ+νµ decays.

Answer: The analysis of this decay is identical to that of the pion decay where an fB
decay constant would be introduced. Therefore,

Γ(B+ → τ+ντ )

Γ(B+ → µ+νµ)
=
m2
τ (m2

B −m2
τ )

2

m2
µ

(
m2
B −m2

µ

)2 =
1.7772 (5.2792 − 1.7772)

2

0.1062 (5.2792 − 0.1062)2 ≈ 220 ,

the current ratio in the PDG is 169+206
−67 .
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10. Calculate the threshold for the reaction

p+ γCMB → ∆+ → Nπ ,

where the average energy of a cosmic microwave background photon is 6.6× 10−4 eV.

If there are 450 CMB photons per cm3 and the cross section for the reaction is 0.6 mb, cal-
culate the mean free path of a proton with an energy at the threshold for this interaction.
Comment on the result.

Solution: In the CM frame the value of s at threshold is m2
∆, which can be compare to

the value in the laboratory

(Ep + Eγ)
2 − (pp − pγ)

2 = m2
∆ (threshold when the collide head on)

⇒ m2
p + 2EpEγ + 2|pp|Eγ = m2

∆

⇒ Ep + |pp| =
m2

∆ −m2
p

2Eγ

=
1.2352 − 0.9382

2× 6.63× 10−13
in GeV

= 4.8× 1011 GeV

Ep = 2.4× 1011 GeV ∵ Ep � mp .

The mean free path is defined as

λ =
1

σn
=

1

0.6× 10−27 × 450
= 3.7× 1024 cm = 3.9 Mly.

Order of the distance to Andromeda so high energy cosmic rays > 1020 eV have to be
relatively local.

11. [Based on Thomson 3.7 and 3.8] (a) For the process a+ b→ 1 + 2 the Lorentz invariant
flux term is

F = 4
[
(pa · pb)2 −m2

am
2
b

] 1
2 .

What is F in the non-relativistic limit |va| � c and |vb| � c?

Answer: We know that E ≈ m + 1
2
mβ2 and p = mβ in the non-relativistic limit.

Therefore,

F = 4
[
(EaEb − pa · pb)2 −m2

am
2
b

] 1
2

≈ 4
[((

ma + 1
2
maβ

2
a

) (
mb + 1

2
mbβ

2
b

)
−mambβa · βb

)2 −m2
am

2
b

] 1
2

≈ 4
[(
mamb + mamb

2
(β2

a + β2
b )−mambβa · βb

)2 −m2
am

2
b

] 1
2

(terms to order β2)

≈ 4mamb

[(
1 +

1

2
|βa − βb|

2

)2

− 1

]1
2

≈ 4mamb |βa − βb|
≈ 4mamb |va − vb| .
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(b) F = 4|p∗i |
√
s in the CM frame, where p∗i is one of the initial state particle’s momentum.

What is F in the frame where b is at rest?

Answer: We have in general

F = 4
[
(pa · pb)2 −m2

am
2
b

] 1
2

= 4
[
(Eamb)

2 −m2
am

2
b

] 1
2 ∵ pa = (Ea,pa), pb = (mb, 0)

= 4mb

[
E2
a −m2

a

] 1
2

= 4mb|pa| .

12. [Griffiths 3.26] For elastic scattering of identical particles A+A→ A+A, show that the
Mandelstam variables become

s = 4
(
p2 +m2

)
t = −2p2 (1− cos θ)

u = −2p2 (1 + cos θ) ,

where p is the CM momentum of the incident particle and θ is the scattering angle.

Answer: We define the four momentum involved in 1 + 2→ 3 + 4 as p1 = (E, 0, 0, |p|),
p2 = (E, 0, 0,−|p|), p3 = (E, 0, |p| sin θ, |p| cos θ|), p4 = (E, 0,−|p| sin θ,−|p| cos θ|)

s = (p1 + p2)2 = (E + E)2 + (p− p)2 = 4E2 = 4
(
p2 +m2

)
t = (p1 − p3)2 = (E − E)2 − |p|2(sin2 θ + (1− cos θ)2) = −2|p|2(1− cos2 θ)

u = (p1 − p4)2 = (E − E)2 − |p|2(sin2 θ + (1 + cos θ)2) = −2|p|2(1 + cos2 θ)

13. [Griffiths 6.8] Consider elastic scattering a + b → a + b in the lab frame (b initially at
rest), assuming the target is so heavy mb � Ea that its recoil is negligible. Determine
the differential scattering cross section.

Answer: In general in the CM frame

dσ

dΩ∗
=

1

64π2

1

s

|p∗f |
|p∗i |
|M|2

In the situation described because mb � Ea the CM and the lab frame are the same i.e.
βCM = pa/(Ea+mb) = βa/(1+mb/Ea) ≈ 0. Also, as the recoil can be ignored |pi| = |pf |
so the cross section will just depend on s = (Ea +mb)

2− |pa|2 = m2
a +m2

b + 2Eamb ≈ m2
b

so
dσ

dΩ∗
=

1

64π2m2
b

|M|2
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