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Outline of the course

• Monday – introduction
• the need for relativity; Lorentz transforms; basic consequences; four vectors; 

proper time; 

• Tuesday – kinematics and decays
• kinematics; Fermi Golden rule; Lorentz invariant phase space; two-body 

decays

• Wednesday – more decays and cross sections
• three-body decay; Dalitz plots; cross section calculations; pseudorapidity

• Thursday - tutorial
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Additional resources

• Books
• A.P. French – Special Relativity (Taylor & Francis)
• D. Griffiths – Introduction to Elementary Particles (Wiley)
• M. Thomson – Modern Particle Physics (Cambridge)

• Lecture courses
• Relativity – M. Tegmark

• https://ocw.mit.edu/courses/physics/8-033-relativity-fall-2006/

• Relativistic kinematics – K. Mazumdar – XIth SERC School on EHEP
• https://www.niser.ac.in/sercehep2017/

• Quantum Field Theory – S. Coleman
• https://arxiv.org/abs/1110.5013
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An apology

Normally I would like to give this type 
of course as chalk’n’talk but given the 
large amount of material and the 
virtual setting I am using slides.

I will try to slow myself down. A good 
way to do that is ask questions, please 
stop me any time that something is 
not clear.
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A bit of history
• Relativity is not new

• “The fundamental laws of physics are the same in all frames of 
reference moving with constant velocity with respect to one another”
• Galileo Galilei 1632 AD
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Classical physics
• Newtonian physics is unchanged e.g.

• But classical electrodynamics is not

• Maxwell’s equations in a vacuum lead to
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Einstein’s postulate

Finding evidence for the medium ‘aether’ that the waves travelled 
through was not forthcoming c.f. Michelson-Morley experiment

So Einstein dispensed with it and amended Galilean relativity with

1) “The fundamental laws of physics are the same in all frames of 
reference moving with constant velocity with respect to one another 
(inertial)”

2) “The speed of light is the same in all inertial frames”
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(𝑐𝑡)2=  𝑟 2

(𝑐𝑡′)2=  𝑟′ 2

⇒ (𝑐𝑡)2−  𝑟 2 = 𝑐𝑡′ 2 − 𝑟′
2

Toward the Lorentz transformations
• Light pulse at t=t’=0
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Lorentz transformation

• The transform between inertial frames

• Time now frame dependent

• When v << c,  0 and 1, and Lorentz  Galilean transformation

• Derivation in back up
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Inverse transform: S moves with velocity –v in the x’ direction in S’ i.e.  

Time dilation: time interval observed in S for a clock at fixed position x’ = 0 is

ct2ct1 = (ct’2ct’1)t=t’

 > 1 therefore ‘a moving clock runs slow’ i.e. cosmic ray muons

Reminder of the basic consequences
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At time t what length x1 to x2 is measured in S for a stick of length l’ on x’ 
axis that is at rest in S’ with ends at x1’ and x2’

Length contraction:

x’2x’1 = (x2x1)l’=l

 > 1 so the stick appears shorter

There is much fun to be had with these, e.g. twin paradox, but not the 
thrust of these lectures so we will move on to the language of relativity

Basic consequence II
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Natural units
As you are aware in particle physics we dispense with [kg, m, s] and use 
[ℏ, 𝑐, 𝐺𝑒𝑉] and we go further to just use GeV by setting ℏ = 𝑐 = 1

So I am getting bored of writing c so I will drop it unless I am making a 
specific point in the lectures
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Four vectors

So far we have seen that we must treat time differently to classical 
physics and it has become relative in a similar way to space coordinates 

We have a way of transforming coordinates between any two inertial 
frames via the LT
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….but it doesn’t have to be (t,x,y,z)

Matrix multiplication 
using the Einstein
summation convention



Invariant

We go back to our master Eq. for SR ⇒ 𝑡2 −  𝑟 2 = 𝑡′2 − 𝑟′
2

This motivates another definition – covariant four-vector
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The metric and inverse 
This leads to the definition of the metric
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Four derivative
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Symmetry of Lorentz Transforms

More abstract a rotation by -i in the (ct,x) plane
But this is a useful way to write the transformation for practical reasons 
(lecture 3) and to understand the symmetry of Lorentz transformation
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Conservation laws and infinitesimal 
transformations
Invariance of a system under a continuous transformation leads to a 
conserved quantity – Noether’s theorem – so there are associated 
quantities with LT, but they are not much used. 

(see Sidney Coleman’s QFT lectures (6 October) for more detail about 
this)

However, thinking about the infinitesimal Lorentz transformations 
elucidates another important connection with symmetry groups

We define infinitesimal transformation as (Problem 3)
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Four vectors in general

• In general a four vector awhen combined with another b

• Further four vectors transform according to Lorentz transformations 
between two inertial frames

• So far we have met space-time four vectors (and we have alluded to 
some in electromagnetism) but we don’t have what we really need 
the energy and momentum that form a four vector

• The first thing to consider is ‘proper time’
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Proper time

A non-accelerating particle will have an inertial frame of reference 
associated with it where it is at rest. 

The ‘clock’ in this frame will have a time agreed upon by observers in all 
other inertial frame

This is referred to as the proper time  c.f. the lifetime of a particle

Can we use this information to find the energy and momentum

We know that if all the laws of physics are invariant then let us use 
Lagrangian formalism for this 

Action = 𝑆 ∝  𝑑𝜏
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Derivation of energy and momentum four 
vector
Recall dimensions of action are 

[Energy][t]  [GeV][GeV]1  dimensionless

The only other invariant quantity we have that has dimension energy is 
the mass M of the particle so we multiply by M

𝑆 = −𝑀 𝑑𝜏 = −𝑀 
𝑑𝑡

𝛾

𝐿 = −𝑀 1 −  𝑥2 −  𝑦2 −  𝑧2
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Energy and four-momentum
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Recap of yesterday and plan for today

• Yesterday
• the need for relativity 
• Lorentz transforms
• four vectors
• proper time and

• Today
• Using the four-momentum: two-body decay kinematics, centre-of-

mass and threshold
• Fermi Golden rule and Lorentz invariant phase space
• two body decay rate
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What about classical physics
E=M when v=0 or as it should appear in a course on relativity 

Therefore kinetic energy is
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Four-momenta and massless particles
So we have shown two ways – based upon proper time – that 

is the representation of energy and momentum relativistically.

Special case m=0

Not so special case at LHC unless particle masses at EW scale – W, Z, H and t 
– mass makes little difference in calculations so assuming m=0 hence E=p 
often chosen
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Example: two-body decay, opening angle (and 
some B physics)
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Example: two-body decay, opening angle (and 
some B physics)

12-16th July 2021 27

From: T. Kuhr, CP-Violation in Mixing and the Interference of Mixing and Decay, in
Flavor Physics at the Tevatron, Springer Tracts in Modern Physics (2013)



What is the  momentum in the B rest frame?
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What is the  momentum in the B rest frame?
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A important formula for any 12+3 process

12-16th July 2021 30

 
2 2

22 2 1 2 2
2 1 2 2 32 2

1 1

4 41
4 1   if 1  

2 2

pm m m
p m m m m

m E m


   
           

   

     2 2
2 2

2 1 2 3 1 2 3 3

1

1
(2 3)

2
p m m m m m m p

m
      1)

2)

3)

2 2 2 2
21 2 1 2

2 3 2 2

1̀ 1 2

if 0
2

pm m m m
p m

m E m m


 
    





Centre of mass frame
How to find the boost to the centre-of-mass (CM) frame?

In general
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Figure belle2.org
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Threshold production
Bevatron was a fixed target (one proton 
at rest) p+p experiment with the goal of 
inducing

𝑝 + 𝑝 → 𝑝 + 𝑝 + 𝑝 +  𝑝

What is the energy of the beam at 
threshold? 
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Griffiths, Introduction to Elementary Particles

2 22 2 2

Total beam beam Total ,Total beam beam beam beam beam

2

beam

In lab frame before collision

( , ) ( ) 2

2 2

In CM frame after collision at threshold (all particles at rest)

p p p p

p p

p E m p p p E m p E p m m E

s m E m

p

 

         

  

 2

Total

beam

(4 ,0) 16

Equating

7

p p

p

m s m

s

E m

   

 

If colliding beams CM and lab 
equivalent 

⟹ 𝐸beam
∗ = 2𝑚𝑝
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GZK cut-off 
problem set

Greisen–Zatsepin–Kuzmin

From PDG, 2020



Griffiths’ suggestions
1) To get the energy of a particle, when you know its 

momentum (or vice versa) use the invariant 

𝐸2− 𝑝 2 = 𝑚2

2) If you know the energy and momentum of a particle, 
and you want to determine its velocity, use  𝛽 =  𝑝/𝐸

3) Use four-vector notation, and exploit the invariant 
dot product 𝑝2 = 𝑚2

4) If the problem seems cumbersome in the lab frame 
try analysing it in the CM system
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Fermi’s Golden Rule (number 2)
• We are now in a position to start thinking about calculations of the most 

important quantities in HEP:  and 

• Fermi Golden rule is the key: Sec. 2.3 Thomson derivation

• |mif|
2 maybe unknown

• extreme case it is a constant so the kinematics of the final state is purely governed 
by ρ(E)

• Therefore, we need to calculate ρ(E) to understand the dynamics of the 
matrix element

 EmW if 
 22


Transition rate

Matrix element of transition i→f  
22

if f if im V 

density of states 
available for energy E 
(phase space factor)
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• State of motion of a single particle with a momentum between 0 to p confined to 
volume V is specified by a point in 6-D phase space (x,y,z,px,py,pz)

• Limit to which a momentum and spatial coordinate can be specified is h from the 
uncertainty principle
• Elemental volume of phase space is h3

• Therefore, the number of states available to an individual particle, Ni, is:

• For a system of n particles the number of available final states, Nn, is the product 

of the individual particles:

37

Density of states

3

3 3

total phase space volume 1

elementary volume (2 ) (2 )
i x y z

V
N dx dy dz dp dp dp d

 
    p

 
3

3
1

( 1)
2

n
n

n i

i

V
N d

 

 
  
 
 

 p
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Phase space
• The phase space factor is defined as the number of states per unit energy interval 

per unit volume (V=1)

• However, not all momenta are independent because of momentum conservation so 
there is the constraint:

• Can be accommodated by integrating over n-1 particles 

 
 

3

3
1

1

2

n
n

in
i

dN d
E d

dE dE


 

   p

momentum  total theis  where0
1

PPp 










n

i

i

 
 

1
3

3( 1)
1

1

2

n

in
i

d
E d

dE









  p
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Phase space continued
• This can be re-expressed more usefully using Dirac δ functions to take care of the 

momentum conservation

 
   

 

1 1
3

1 1

1 1
3 3

3( 1) 3( 1)
11 1

3

3( 1)
1

Write the momentum conservation as:

0  so 1

1 1

2 2

1

2

n n

i n i

i i

n n n

i i in n
ii i

n

i in
i

d

d d
E d d

dE dE

d
d

dE



 
 




 

 

 

 
 




    
         
    

  
      

  

 

 

  

n n

n

p P p p p P p

p p p P p

p P p
1

n

i

 
 
 


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Phase space continued
• This can be re-expressed more usefully using Dirac δ functions to take care of the 

momentum conservation

 
 

 

1 1

3

3( 1)
1 11

3

3( 1)
1 11

Energy conservation gives 0 so 1

1

2

1
 as ( ) ( )

2

n n

i i

i i

n n n

i i in
i ii

n n n

i i in
i ii

E E dE E E

d
E d dE E E

dE

d
d E E f E dE f E

dE



  


 


 


 


 

 
    

 

   
     

   

   
     

   

 

 

  

p P p

p P p

Only problem this is 
not Lorentz invariant
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Ensuring Lorentz invariance

• Fermi’s golden rule:

• If ρ(E) is not Lorentz invariant then neither is |mif|
2

• Consider a single massive particle moving with energy E in a volume V which is 
described by a wavefunction ψ normalised to ∫| ψ|2dV=1

• This normalisation implies that the particle density is 1/V  for a stationary 
observer

• However, if the particle speed is relativistic then there will be a contraction by a 
factor 1/ in the direction of motion so the particle density appears to be /V

• Normalising the wavefunctions to              ensures the particle density becomes 
invariant

 
2

2 ifW m E 

 
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Ensuring Lorentz invariance
2 2 2

2 2

1 1 1 1

For the transition rate we can redefine the matrix element to be:

2 2 2 2

where  represents particles in the initial state so the transition rate to a sin

n n n n

if if j j i i if j i

j i j i

M m m c m c m E E
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   
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 
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1
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Integrate over all final states to get:
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Lorentz invariant phase space

Factor 2 later
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Showing that it is invariant

   

2 2

To show that this Lorentz invariant consider the Lorentz transformations 

for  boost is in  direction:
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   
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2 body phase space
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2 body phase space
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To do the integral we need to write  in terms of , and . In the centre of mass frame 
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Two body decay rate a1+2
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  1

2 2

1

Let's consider two-body decay of particle a mass , so  in CM frame

1
Two-body Lorentz invariant phase space is 

8

*  is the momentum of the decay products of the rest frame  
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