Search for Hidden-Photon Dark Matter with FUNK

R. Engel, D. Veberič, C. Schäfer, A. Andrianavalomahefa, K. Daumiller,
B. Döbrich, J. Jaeckel, M. Kowalski, A. Lindner, H.-J. Mathes, J. Redondo,
M. Roth, T. Schwetz-Mangold, R. Ulrich

Hidden photons as dark matter candidates

Hidden photon $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} \tilde{X}_{\mu\nu} \tilde{X}^{\mu\nu} - \frac{\chi}{2} F_{\mu\nu} \tilde{X}^{\mu\nu} + \frac{m_{\gamma'}^2}{2} \tilde{X}_{\mu} \tilde{X}^{\mu} + J^{\mu} A_{\mu}$ mass term

U(1) is simplest extension of SM, predicted by many theories

WISPy cold dark matter JCAP06(2012)013

Paola Arias,^{*a,b*} Davide Cadamuro,^{*c*} Mark Goodsell,^{*a,d*} Joerg Jaeckel,^e Javier Redondo^c and Andreas Ringwald^a

Non-thermal production, formation of a condensate

$$\rho_{\rm CDM} = \frac{m_{\gamma'}^2}{2} |\mathbf{X}|^2$$

kinetic mixing, coupling

New detection idea: spherical mirror ournal of Cosmology and Astroparticle Physics

Transition conditions at metallic mirror

(Knirck & Jaeckel, PATRAS 2016)

$$\sin\beta = v \sin\alpha \approx 10^{-3}$$

- Signal in radius point
- Daily / seasonal shift by ~ few mm

Searching for WISPy cold dark matter with a dish antenna

Dieter Horns,^{*a*} Joerg Jaeckel,^{*b,c*} Axel Lindner,^{*d*} Andrei Lobanov,^{*e*,1} Javier Redondo^{f,g} and Andreas Ringwald^{*d*}

JCAP04(2013)016

 $P_{\rm center} \approx \chi^2 \rho_{\rm CDM} A_{\rm mirror}$

First measurement: Tokyo group

ournal of Cosmology and Astroparticle Physics

Experimental search for hidden photon CDM in the eV mass range with a dish antenna

JCAP09(2015)042

J. Suzuki,^{*a*} T. Horie,^{*a*} Y. Inoue^{*b*} and M. Minowa^{*a*,*c*}

Comparison of signal of low-noise PMT in radius point and outside (motorized stage)

Dark box of 1 x 1 x 3 m^3 Mirror of d = 0.5 m (A = 0.196 m^2) Data taking ~ 1 month

Photon rate In - Out (at 4.5 Hz rate):

 $N = (-1.9 \pm 3.8 (\text{stat.}) \pm 0.5 (\text{sys.})) \times 10^{-3} \text{ Hz}$

Finding U(1)s of a Novel Kind – FUNK

Alignment of mirror segments

Motorized stage and shutter

Measurement with low-noise, UV-extended PMT

ET Enterprises

	9107B borosilicate	9107QB* fused silica
spectral range**(nm) refractive index (n _d)	280 - 630 1.49	160 - 630 1.46
K (ppm) Th (ppb) U (ppb)	300 250 100	<10 <10 <10

far-UV extended sensitivity (Q)

Data runs: examples of traces

Data analysis – work in progress

Raw trigger rate

date

Selection of single photons

Preliminary analysis of data – four configurations

 $\Delta R = -0.0228 \pm 0.0014$

Measurement sequence (60 s in each position):

- out/open
- out/close
- in/open
- in/close

 $\Delta R = -0.0007 \pm 0.0014$

□ out/open

 $\Delta R = 0.0253 \pm 0.0014$

□ out/close

☐ in/close

(run 6, all rates in Hz)

Preliminary analysis of data – four configurations

⁽run 6, all rates in Hz)

Preliminary FUNK results

 $Log_{10} m_X[eV]$

Outlook

Improve measurement in visible and UV range

- Study of systematic effects, check FoV effect and search for possible light leaks
- Improvement of setup (light shielding, temperature stability, monitoring)
- Use of signal time correlation (time echo) to measure Cherenkov background
- Correction for temperature-dependent gain of PMT

Perform measurements with other sensors to cover other phase space regions

GHz receivers (commercial) Ku bands: 11 - 14 GHz

THz detector developed at KIT (LN2)

Backup slides

Hidden photons as source of photons

Re-definition to find classic e.o.m.

$$\tilde{X}^{\mu} \to X^{\mu} - \chi A^{\mu}$$

Spatially constant oscillating field

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{X} \end{pmatrix} \Big|_{\mathrm{DM}} = \mathbf{X}_{\mathrm{DM}} \begin{pmatrix} -\chi \\ 1 \end{pmatrix} \exp(-i\omega t)$$

Constraint on energy density

$$\frac{m_{\gamma'}^2}{2} \langle |\mathbf{X}_{\rm DM}|^2 \rangle = \rho_{\rm CDM,halo} \sim \frac{0.3 \,\mathrm{GeV}}{\mathrm{cm}^3}$$

Small oscillating electric field

$$\sqrt{\langle |\mathbf{E}_{\rm DM}|^2 \rangle} = \chi \sqrt{2\rho_{\rm CDM,halo}} \sim 3.3 \times 10^{-9} \ \frac{V}{\rm m} \left(\frac{\chi}{10^{-12}}\right) \left(\frac{\rho_{\rm CDM,halo}}{0.3 \,{\rm GeV/cm^3}}\right)$$

$$f = \frac{m_{\gamma'}}{2\pi} = 0.24 \text{ GHz} \left(\frac{m_{\gamma'}}{\mu \text{eV}}\right)$$

Test measurement with cooled CCD camera

Veberic et al. ICRC 2015 (1509.02386)

17

Data runs: raw trigger rates

Dec 22 2016 Jan 05 2017 Jan 19 2017 Feb 02 2017 Feb 16 2017 Mar 02 2017 Mar 16 2017 Mar 30 2017 Apr 13 2017 date

Charge distribution of measured signals

Calibration: single-photon trace measured with flasher (direct trigger) Charge obtained by integrating traces

Selection window for single photons (selection efficiency 0.75)

Electronics noise

Muon hits and showers

Pierre Auger Observatory, Argentina

Larger mirrors available ?

Fluorescence telescope of Auger Observatory

21

