

Searches for supersymmetric dark matter candidates and long-lived particles with the ATLAS experiment

Edoardo Farina

CERN & University of Pavia

on Behalf of the ATLAS Collaboration

TeVPA 2017, Columbus, Ohio, USA

11 August 2017

 $[\]Gamma_{a}$

Looking for SUSY at ATLAS

Analyses are optimised for dedicated signal models based on assumptions:

- R-Parity conserved or violated
- Defined mass spectrum
- Restricting free parameters
- Specific final state

3

Looking for SUSY at ATLAS: latest results

Inclusive search: multijets analysis

Main discriminating variables:

- Missing transverse energy
- Jet and b-tagged jet multiplicity
- Scalar sum of jet momenta
- Mass of "fat" jets

Background estimates

W+jets/ttbar enriched 1 lepton CR

1 lepton, same SR selection lower jet multiplicity

QCD Multijet background

Template based on MET/√H⊤ at lower jet multiplicity

Inclusive search: multijets analysis

- 27 SRs based on jet/b-jet multiplicity and sum of reclustered jet masses
- No significant excess found
- Limits on gluino masses obtained:
 - In two steps decay gluino is excluded up to 1.8 TeV for light LSP
 - In pMSSM for chargino mass below 600 GeV gluino excluded up to 1.6 TeV

Electroweak production: 2 τ final state

Models with stau can lead to dark matter relic density compatible with observation

Main discriminating variables:

- Missing transverse energy
- Stranverse mass (m_{T2})

Background estimates
Multijets (mis. taus): Estimated from data
W+jets (mis. taus): Estimated from MC and data
Irreducible background (ttbar, single top, WW, ZZ): Estimated from MC
VRs are defined to validate each background estimation:

Electroweak production: 2 τ final state

- 2 Signal regions defined targeting signal model with mass difference between chargino and neutralino smaller or larger than 200 GeV
- No significant excess found
- Chargino/next-to-lightest Neutralino masses up to 630 GeV and 760 are excluded for massless neutralino in the two scenarios

SM process	SR-lowMass	SR-highMass		
diboson	5.9 ± 2.2	$ \begin{array}{r} 1.0 \pm 0.8 \\ 0.7 \pm 0.5 \\ 0.03^{+0.26}_{-0.03} \\ 0.6 \pm 0.5 \\ 1.3 \pm 1.1 \\ 3.7 \pm 1.4 \\ 5 \end{array} $		
W+jets	1.8 ± 1.1			
Top quark	1.2 ± 1.0			
Z+jets	$0.6^{+0.7}_{-0.6}$			
multi-jet	4.3 ± 4.0			
SM total	14 ± 6			
Observed	10			
Reference point 1	11.6 ± 2.6	11.8 ± 2.8		
Reference point 2	10.0 ± 2.1	11.4 ± 2.6		
p_0	0.5	0.3		
Expected $\sigma_{\rm vis}^{95}$ [fb]	$0.31_{-0.08}^{+0.12}$	$0.17\substack{+0.08 \\ -0.05}$		
Observed $\sigma_{\rm vis}^{95}$ [fb]	0.26	0.20		

Summary of strong and electroweak production

Electroweak

Strong

Search for long lived particles: displaced vertices

E. Farina, TeVPA 2017

17 August, 2017

Search for long lived particles: displaced vertices

Search for long lived particles: disappearing tracks

Analysis strategy:

Reconstruction of tracklets based on pixel hits only. To reject background, jet activity and missing transverse energy also required

Search for long lived particles: disappearing tracks

No excess observed, exclusion limits are derived

Chargino masses up to 430 GeV are excluded for lifetime of 0.2 ns, corresponding to a mass splitting of 160 MeV

Summary and conclusions

- Many SUSY searches foresee LSP dark matter candidates as final state
- Only few analyses have been discussed, much wider panorama (see next slide)
- No significant excess found so far, but:
 - Full Run 2 dataset will provide more insight in many unexplored SUSY scenarios
 - More complex tools and analysis strategies are being implemented

Summary and conclusion

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s}=7,8$	3 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} \\ (compressed) \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{q} \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{k}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q (\ell \ell / \nu \gamma) \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ GMSB (\tilde{\ell} NLSP) \\ GGM (hig sino - bino NLSP) \\ GGM (higgsino - bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \end{array} $	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 b 2 jets 2 jets 2 jets mono-jet	 b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 	20.3 36.1 3.2 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3		1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.825 TeV 1.87 TeV 1.37 TeV 1.8 TeV	$\begin{split} \mathbf{m}(\tilde{q}) = \mathbf{m}(\tilde{g}) \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 200 \text{ GeV}, \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 5 \text{ GeV} \\ \mathbf{m}(\tilde{q}) - \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 5 \text{ GeV} \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 200 \text{ GeV} \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 200 \text{ GeV} \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 400 \text{ GeV} \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 400 \text{ GeV} \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 400 \text{ GeV} \\ \mathbf{cr}(\mathbf{NLSP}) <& 0.1 \text{ mm} \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) <& 950 \text{ GeV}, \\ \mathbf{cr}(\mathbf{NLSP}) <& 0.1 \text{ mm}, \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) && 560 \text{ GeV}, \\ \mathbf{cr}(\mathbf{NLSP}) <& 0.1 \text{ mm}, \\ \mathbf{m}(\tilde{\chi}_{1}^{0}) && 560 \text{ GeV}, \\ \mathbf{cr}(\mathbf{nLSP}) <& 430 \text{ GeV} \\ \mathbf{m}(\tilde{G}) >& 1.8 \times 10^{-4} \text{ eV}, \\ \mathbf{m}(\tilde{g}) =& \mathbf{m}(\tilde{g}) =& 1.5 \text{ TeV} \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
<i>§</i> med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{t}\tilde{\chi}^+_1 \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	80 80 80	1.92 TeV 1.97 TeV 1.37 TeV	$m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 ^{.4} gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to t\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to k\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + h \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 0\text{-}2\ e,\mu\\ 0\text{-}2\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1\text{-}2\ e,\mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{split} &m(\tilde{x}_{1}^{0}){<}420GeV \\ &m(\tilde{x}_{1}^{0}){<}200GeV, m(\tilde{x}_{1}^{+}){=}m(\tilde{x}_{1}^{0}){+}100GeV \\ &m(\tilde{x}_{1}^{+}){=}2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}){=}55GeV \\ &m(\tilde{x}_{1}^{0}){=}1GeV \\ &m(\tilde{x}_{1}^{0}){=}150GeV \\ &m(\tilde{x}_{1}^{0}){=}150GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \\ &m(\tilde{x}_{1}^{0}){=}0GeV \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
Evv direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{X}_{1}^{0} \\ \tilde{X}_{1}^{\dagger} \tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{X}_{1}^{\dagger} \tilde{X}_{1}^{-}, \tilde{X}_{2}^{\dagger}, \tilde{X}_{1}^{\dagger} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}), \tilde{X}_{2}^{0} \rightarrow \tilde{\tau} \tau (\nu \tilde{\nu}) \\ \tilde{X}_{1}^{\dagger} \tilde{X}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{X}_{1}^{\dagger} \tilde{X}_{2}^{0} \rightarrow W \tilde{X}_{1}^{0} h \tilde{X}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{X}_{2}^{\dagger} \tilde{X}_{2}^{0} \rightarrow W \tilde{X}_{1}^{0} h \tilde{X}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{X}_{2}^{0} \tilde{X}_{3}, \tilde{X}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{X}_{1}^{0} - \text{GGM (bino NLSP) weak prod., } \tilde{X}_{1}^{0} - \frac{1}{2} \\ \end{array} $	$\begin{array}{c} 2 \ e,\mu \\ 2 \ e,\mu \\ 2 \ \tau \\ 3 \ e,\mu \\ 2 \ -3 \ e,\mu \\ e,\mu,\gamma \\ 4 \ e,\mu \\ \rightarrow \gamma \tilde{G} \ 1 \ e,\mu + \gamma \\ \overline{Q} \ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TeV $m(\tilde{\chi}_1^{\pm})=r$ $m(\tilde{\chi}_2^{0})=r$	$\begin{array}{l} m(\tilde{x}_{1}^{0})\!=\!0 \\ m(\tilde{x}_{1}^{0})\!=\!0, m(\tilde{\ell}, \tilde{\nu})\!=\!0.5(m(\tilde{\chi}_{1}^{\pm})\!+\!m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0})\!=\!0, m(\tilde{\tau}, \tilde{\nu})\!=\!0.5(m(\tilde{\chi}_{1}^{\pm})\!+\!m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})\!=\!0, m(\tilde{\ell}, \tilde{\nu})\!=\!0.5(m(\tilde{\chi}_{1}^{\pm})\!+\!m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm})\!=\!m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})\!=\!0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{\chi}_{1}^{\pm})\!=\!m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})\!=\!0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})\!=\!0, m(\tilde{\ell}, \tilde{\nu})\!=\!0.5(m(\tilde{\chi}_{2}^{0})\!+\!m(\tilde{\chi}_{1}^{0}))) \\ c\tau\!<\!1nm \\ c\tau\!<\!1nm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu \nu/\mu\mu \nu$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk) $1-2 \mu$ 2γ displ. $ee/e\mu/\mu\mu$ displ. vtx + jets	1 jet - 1-5 jets - - - - μ - s -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^{0}) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) = 0.2 \; ns \\ & m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^{0}) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) < 15 \; ns \\ & m(\tilde{\chi}_1^{0}) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{\chi}_1^{0}) = 100 \; GeV, \; \tau > 10 \; ns \\ & 10 < tan\beta < 50 \\ & 1 < \tau(\tilde{\chi}_1^{0}) < 3 \; ns, \; SPS8 \; model \\ & 7 < c\tau(\tilde{\chi}_1^{0}) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ & 6 < c\tau(\tilde{\chi}_1^{0}) < 480 \; mm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu v, \mu\mu \nu \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau\tau v_e, e\tau v_\tau \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qq q \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{g}\tau \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qq q \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{g}\tau \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qq q \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{g}\tau \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qq q \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{g}\tau \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qq q \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, $\mu + \tau$ 0 4- 1 e, μ 8- 1 e, μ 8- 0 2 e, μ	- 0-3 <i>b</i> - 5 large- <i>R</i> ju -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i>	- Yes Yes ets - ets - 4 b - 4 b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	$ \begin{array}{c c} \bar{v}_{\tau} \\ \bar{q}, \bar{g} \\ \bar{x}_{1}^{\pm} \\ \bar{x}_{1}^{\pm} \\ \bar{x}_{1}^{\pm} \\ \bar{z}_{1}^{\pm} \\ $	1.9 TeV 1.45 TeV TeV eV 1.55 TeV 2.1 TeV 1.65 TeV .4-1.45 TeV	$\begin{split} \lambda'_{311} = 0.11, \lambda_{132/133/233} = 0.07 \\ m(\tilde{q}) = m(\tilde{g}), c\tau_{LSP} < 1 \text{mm} \\ m(\tilde{k}_1^0) > 400 \text{GeV}, \lambda_{12k} \neq 0 (k = 1, 2) \\ m(\tilde{k}_1^0) > 0.2 \times m(\tilde{k}_1^+), \lambda_{133} \neq 0 \\ \text{BR}(t) = \text{BR}(b) = \text{BR}(c) = 0\% \\ m(\tilde{k}_1^0) = 800 \text{GeV} \\ m(\tilde{k}_1^0) = 800 \text{GeV} \\ m(\tilde{k}_1^0) = 1 \text{TeV}, \lambda_{112} \neq 0 \\ m(\tilde{k}_1) = 1 \text{TeV}, \lambda_{323} \neq 0 \\ \text{BR}(\tilde{t}_1 \rightarrow be/\mu) > 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
)ther	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	ε 510 GeV		m($ ilde{\mathcal{X}}_1^0$)<200 GeV	1501.01325
)nly ohen	a selection of the available ma omena is shown. Many of the	ass limits on n e limits are bas	new state sed on	es or	1	D ⁻¹	1	Mass scale [TeV]	

*(phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

E. Farina, TeVPA 2017

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$