SEARCHES FOR LOW MASS DIJET FOR LOW MASS DIJET RESONANCES AT CMS

TEV PARTICLE ASTROPHYSICS 2017 Ohio State University Columbus, Ohio, USA

Javier Duarte Fermilab AUGUST 8, 2017

arXiv:1501.04198 A LOOK AT THE PHASE SPACE

- Classic dijet search (Run 1) targets narrow resonances
- Sensitive to many signal models: axigluons, colorons, W', Z', excited quarks, string resonances, RS gravitons, S8 resonances, ...
- But every model comes with a cross section assumption: low mass → very large cross section
- Have we really ruled out all possibilities at low mass?

Resonance mass (GeV)

arXiv:1306.2629 NEW LOOK AT THE PHASE SPACE

Generic model with a leptophobic Z' before Run 2

arXiv:1306.2629 NEW LOOK AT THE PHASE SPACE

 Due to trigger thresholds and larger backgrounds, standard dijet search @ LHC explores lower in coupling at higher masses

Javier Duarte

Fermilab

arXiv:1306.2629 NEW LOOK AT THE PHASE SPACE

• How can we go lower in coupling and lower in mass?

 M_{Z_R} (GeV)

TWO METHODS

 Data scouting: lower trigger thresholds by recording only information necessary to perform analysis (to get around data-taking constraints)

 Boosted dijets + associated ISR jet: Use ISR jet to get above the trigger thresholds

 $Z'_B(m_{med})$

LOW MASS DIJET RESONANCES DATA SCOUTING

D. Anderson "Data Scouting at CMS" 2015 IEEE NSS/MIC

• How can we trigger below $H_T = 900 \text{ GeV}$?

- Reconstruct/save only necessary information to perform analysis
 → record more events
- Calibrate using data stream containing both reduced content and standard content
- "Calo Scouting" allows us to get down to H_T > 250 GeV

Javier Duarte Fermilab

LIMITS ON NARROW RESONANCES

• Expanded CMS reach at low mass

BOOSTED DIJETS

LOW MASS DIJET RESONANCES

11

ASSOCIATED ISR JET TOPOLOGY Use ISR jet to get you above the trigger threshold Look for boosted light Z'(qq) / Φ(bb) / H(bb) resonance

EXO-17-001 ANALYSIS SELECTION

- Online selection:
 - jet $p_T > 360 \text{ GeV} (m > 30 \text{ GeV})$ or $H_T > 900 \text{ GeV}$
- Offline selection:
 - jet $p_T > 500 \text{ GeV}, |\eta| < 2.5$
- Substructure selection:
 - Soft drop jet mass > 40 GeV
 - N¹₂^{DDT} (5% QCD eff. WP)
- Backgrounds:
 - QCD
 - SM Candles: W/Z + jets

Javier Duarte

Fermilab

q/g

SIDEBAND QCD PREDICTION

- Core idea: predict QCD jet mass distribution from failing region
- Problem: cut on N¹₂ sculpts jet mass distribution!

SIDEBAND QCD PREDICTION

• Solution: define new substructure variable intended to be decorrelated from jet mass

Z' INTERPRETATION

- Jet mass distribution is fit down to 40 GeV
- Interpretation for resonance masses down to 50 GeV (!)

in-situ constraint of Z'(qq) signal systematics

EXO-17-001

HIG-17-010 HIGGSTOBB? Similar background estimation strategy using CMS double-b tagger (<u>BTV-15-002</u>)

SM candles: Z(bb) peak provides in-situ constraint of H(bb) signal systematics

LOW MASS DIJET RESONANCES CONNECTION TO DARK MATTER

DARK MATTER MEDIATOR

- If our leptophobic Z' couples to dark matter as well quarks, then it acts as mediator between the dark sector and visible sector (SM)
- How do our limits on the mediator change as we turn on gpm > 0 and mpm < m_M/2 ?

Javier Duarte

Fermilab

4D parameter space: gpm^d, gq, mpm, mm

 Sensitive to large range of *dark matter* parameter space by looking directly for resonant production of the *mediator*

 Sensitive to large range of *dark matter* parameter space by looking directly for resonant production of the *mediator*

• We can convert these limits in the (m_M, m_DM) plane into limits in the (m_DM, σ_{SD}) plane to compare with ID/DD DM experiments

For axial-vector mediator with universal quark coupling g_q' , mediator-nucleon coupling is

$$f^{\rm p} = f^{\rm n} = 0.32g'_{\rm q}.$$

$$\sigma_{\rm DM-p}^{\rm SD} = \frac{3f^2(g'_{\rm q})g_{\rm DM}^2\mu_{\rm N\chi}}{\pi m_{\rm med}^4} \qquad \text{arXiv:1603.04156}$$
$$\simeq 2.4 \times 10^{-42} \,\rm{cm}^2 \cdot \left(\frac{g'_{\rm q}g_{\rm DM}}{0.25}\right)^2 \left(\frac{1\,{\rm TeV}}{m_{\rm med}}\right)^4 \left(\frac{\mu_{\rm N\chi}}{1\,{\rm GeV}}\right)^2$$

 Competitive with direct detection experiments (depending on the details of the model: couplings, mediator type, etc.)

SUMMARY AND OUTLOOK

- 2016 dijet searches at the LHC are probing lower in resonance mass and coupling
- Many complementary searches, new techniques (substructure, decorrelation), and interpretations (DM mediators)
- Limits in DM-nucleon cross section vs.
 mass plane are competitive with direct detection experiments
- 2017 data taking is already underway!

Fermilab

Javier Duarte

DIJET AND BOOSTED DIJET SEARCHES

BACKUP

TRIGGER SYSTEM

- How can we trigger below $H_T = 800-900$ GeV?
- Two limitations:
 - Bandwidth = event rate × event size limited by read-out of O(100M) detector channels, disk storage, and everyone else's favorite physics channel
 - CPU time limited by computing resources for online reconstruction

Total Reco. BW: 1 kHz × 1 MB CPU time: 150 ms

CMS

<u>H. Brun, LP 2015</u>

CALO JET VS PF JET

• Ratio of Calo HLT dijet mass to PF RECO dijet mass

Javier Duarte

Fermilab

$$g_q' = g_B/6$$

Javier Duarte

Fermilab

SYSTEMATICS

- Signal systematic uncertainties from merged W sample in semileptonic ttbar events (external constraint)
- SM candles: presence of W/Z in final jet mass distribution provides additional in-situ constraint, i.e. W/ Z/Z' nuisances are tied together

 Competitive with direct detection experiments (depending on the details of the model: couplings, mediator type, etc.)

WIDE JETS

- Jets initially reconstructed with anti- k_T algorithm with R=0.4
- "Wide jet" algorithm uses two leading jets as seeds
 - Adds neighboring jets to nearest leading jet if within $\Delta R < 1.1$
 - Recover loss in mass response due to radiation

WIDE JETS

- Gluon-gluon resonances are wider than quark-quark resonances due to greater radiation (gluon color factor)
- Mass resolution improved with wide jets even in gluon-gluon case

Probability 0.1

0.08

0.06

0.04

0.02

1000

Fermilab

Javier Duarte

