

Search for long-lived particles at CMS

TeVPA 2017 Brian Francis

for the CMS Collaboration

Long-lived particles (LLP) at CMS

- Despite best efforts, no evidence yet of BSM physics at the LHC
- If it's not where we've looked, hugely important to consider where we haven't!
- LLPs (cτ > ~5 microns) offer a wide variety ' of non-conventional signatures
 - Many models predict LLPs: split/RPV SUSY, hidden valleys, magnetic monopoles...
 - Non-prompt signatures are easily missed by prompt searches
- CMS is already sensitive to a *very* wide range of particle lifetimes
 - From well beyond the first and last active layers

Search for long-lived particles at CMS — TeVPA 2017

Stopped Particle Search

- Considers HSCPs that become completely stopped within the detector
- May decay *much* later
- Two signatures searched for:
 - Calorimeter (jets) <u>2264688</u>
 - Muon system (muons) <u>2273460</u>
- Both search in combined 2015+2016 dataset
- Search for decays out-of-time with colliding protons
- Backgrounds:
 - Cosmic rays
 - Beam halo
 - Detector noise

Stopped Particle Search: Calorimeter Signature

Γηε Ομιο State

UNIVERSITY

- Trigger on events out-of-time with proton collisions (≥ 2 bunch crossings)
- Energetic jet (E > 70 GeV)
- Data collected over 721 hours of trigger livetime
- Data-driven background estimation
- No excess observed
- Places limits on gluino and stop lifetimes up to ~11 days

Period	Livetime (hrs)	Noise	Cosmics	Halo	Total	Observed
2015 control	-	$0.3^{+2.4}_{-0.3}$	1.7 ± 0.6	0	-	2
2015	135	$0.4^{+2.9}_{-0.4}$	2.6 ± 0.9	1.1 ± 0.1	4.1 ^{+3.0} _{-1.0} (the median is 6.2)	4
2016 control	-	0+22	2.5 ± 0.9	0	-	2
2016	586	0+9.8	8.8 ± 3.1	2.6 ± 0.2	$11.4_{-3.1}^{+10.3}$ (the median is 17.4)	13

6

Stopped Particle Search: Muon Signature

- Requires two muons out-of-time with proton collisions (≥2 bunch crossings), one each in upper/lower hemispheres
 - Unique reconstruction with no beamspot constraints
- Distinguish signal from cosmic muons by:
 - Direction of each muon
 - Time of flight difference between muons
- Data taken over 744 hours of trigger livetime
- No events observed

τε Οηίο State

UNIVERSITY

 Limits placed on gluino and stop lifetimes up to ~10 days

7

Search for long-lived particles at CMS — TeVPA 2017

Disappearing Tracks Search

- Charged LLPs decaying in the inner tracker to neutral or un-reconstructed particles
- Striking signature of a disappearing track:
 - Missing outer hits in the inner tracker
 - Very small associated calorimeter energy
 - No hits in the muon system
- Trigger on MET from radiated jet

UNIVERSITY

CMS

Disappearing Tracks Search

- Very small instrumental backgrounds:
 - Un-reconstructed charged leptons
 - 'Fake' tracks tracker hit combinations not produced by a single particle
- No excess observed in 8 TeV (Run I) data
 - Cross section limits placed on AMSB chargino production
- The Run II analysis is well under way!

ΉΕ ΟΗΙΟ STATE

UNIVERSITY

Specialized trigger requiring MET and isolated track

Search for long-lived particles at CMS — TeVPA 2017

- Completely data-driven background estimation
- Pixel tracker upgrade: additional layer since 2017!

Event source	Yield
Electrons	<0.49 (stat) <0.50 (stat+syst)
Muons	$0.64^{+1.47}_{-0.53}$ (stat) \pm 0.32 (syst)
Taus	<0.55 (stat) <0.57 (stat+syst)
Fake tracks	$0.36^{+0.47}_{-0.23}$ (stat) \pm 0.13 (syst)
Data	2

Displaced eµ Search

- Requires an e-µ pair with opposite charge
- Discriminates from SM backgrounds with lepton impact parameter (d₀)

Γήε Ομιό State

UNIVERSITY

12

Search for long-lived particles at CMS — TeVPA 2017

Displaced eµ Search

- No excess observed in 3 orthogonal search • regions 200 μ m < d₀ < 10 cm
- Currently updating with 2016 data lacksquare
 - Expanding search to include ee, µµ decays
- Will also benefit from 2017 pixel tracker lacksquareupgrade

Event Source	Search Region I	Search Region II	Search Region III
$W \rightarrow l\nu$	$(1.1 \pm 0.5) \times 10^{-3}$	$(2.4 \pm 1.7) \times 10^{-5}$	$(0.25 \pm 0.29) \times 10^{-5}$
single top	$(8.4 \pm 1.2) \times 10^{-3}$	$(35 \pm 12) \times 10^{-5}$	$(1.50 \pm 0.91) \times 10^{-5}$
diboson	$(18.2 \pm 5.8) \times 10^{-3}$	$(39 \pm 25) \times 10^{-5}$	$(4.0 \pm 4.6) \times 10^{-5}$
Z→ll	$(115 \pm 25) \times 10^{-3}$	$(100 \pm 160) \times 10^{-5}$	$(69 \pm 71) \times 10^{-5}$
tī	$(60.6 \pm 5.1) \times 10^{-3}$	$(226 \pm 25) \times 10^{-5}$	$(8.0 \pm 1.6) \times 10^{-5}$
non-HF sum	$(203 \pm 26) \times 10^{-3}$	$(410 \pm 170) \times 10^{-5}$	$(82 \pm 71) \times 10^{-5}$
data-driven HF	< 3.0	< 0.50	< 0.019
total background	< 3.2	< 0.50	< 0.020
observation	1	0	0
$pp \rightarrow \tilde{t}_1 \tilde{t}_1^* (M_{\tilde{t}_1} = 700 \text{ GeV})$			
$c\tau = 0.1 \mathrm{cm}$	3.8 ± 0.2	0.94 ± 0.06	0.16 ± 0.02
$c\tau = 1 \mathrm{cm}$	5.2 ± 0.4	4.1 ± 0.3	7.0 ± 0.3
$c\tau = 10 \mathrm{cm}$	0.8 ± 0.1	1.0 ± 0.1	5.8 ± 0.2
$c\tau = 100\mathrm{cm}$	0.009 ± 0.005	0.03 ± 0.01	0.27 ± 0.03

Search for long-lived particles at CMS — TeVPA 2017

100 000

1000

500

200

100

0 0 **CRI**

 $e |d_0| [\mu m]$

Summary and Outlook

- More important than ever to search where we haven't before
- Many signatures require nonconventional analysis techniques
- Many upcoming results from CMS with the current 38.5/fb 13 TeV dataset
- 2017 is well under way!
 - Upgraded pixel detector with new 4th barrel layer and 3rd endcap disk on each side

	Final state	13 TeV
1	displaced ee/µµ pairs	
2	displaced µµ pairs in muon system	
3	displaced eµ pairs	<u>2205146</u>
4	displaced µµ pairs (dark photons)	<u>2232052</u>
5	displaced photons using ECAL timing	
6	displaced photons using conversions	
7	displaced vertices	
8	displaced jets	2256654
9	short, highly ionizing disappearing tracks	
10	disappearing tracks	
11	kinked tracks	
12	fractionally charged particles	
13	HSCPs	<u>2114818</u> (2015) <u>2205281</u> (2016)
14	stopped particles	<u>2264688</u> (jets) <u>2273460</u> (muons)
15	delayed muons	
16	many more!	

Search for long-lived particles at CMS — TeVPA 2017

Backups

Search for long-lived particles at CMS — TeVPA 2017

2017 Proton Collisions

2017 Proton Collisions

Heavy Stable Charged Particle (HSCP) search

Search for long-lived particles at CMS — TeVPA 2017

UNIVERSITY

Displaced Jets Search

arXiv:1503.05923

- Long-lived neutral particles decaying to a jet (or jets) within the detector
- Highly sensitive Run I analysis searched for dijets sharing a displaced vertex
- Run II analysis developed a jet-based tagging strategy
 - Now sensitive to single displaced jets
 - Able to place limits on RPV stop models

2256654

Displaced Jets Search

Jet tagging variables:

UNIVERSITY

- Vertex a: fraction of jet's track PT associated to vertex (cut on highest α vertex)
- Track IP_{sig}: transverse impact parameter wrt PV, divided by its error
 - Cut on median IP^{2D}_{sig} for the jet
- Track O: angle between track PT and the direction from the PV and the track's innermost hit
 - Cut on median Θ_{2D} for jet

Image credit: J. Hardenbrook

Search for long-lived particles at CMS — TeVPA 2017

brian.patrick.francis@cern.ch

22

Displaced Jets Search

B-Lepton

CMS Preliminary 2.6 fb⁻¹ (13 TeV)

1000 1200 1400

10³ Cτ₀ [mm]

10²

2.6 fb⁻¹ (13 TeV)

m_{x⁰} [GeV]

Jet-Jet: pp $\rightarrow X^0, X^0 \rightarrow q\overline{q}$

600

CMS Preliminary

Jet-Jet

10

ΓΗΕ ΟΗΙΟ STATE

UNIVERSITY

400

800

X⁰ حت₀ [mm]

10²

10

 σ x BR² upper limit 95% CL [fb]

10³

- Very small backgrounds
- No excess observed
- Limits set on several models as a function of particle lifetime and mass

N_{tags}	Expected	Observed
2	1.09 ± 0.16	1
\geq 3	$(4.9 \pm 1.0) imes 10^{-4}$	0