Unexpectedly Bright: High energy emission from SNRs

Katie Auchettl The Ohio State University/CCAPP

with Patrick Slane (CfA), Daniel Castro (NASA/GSFC), Laura Lopez (OSU), Nicole Man (UCSC), Stephen Ng (HKU), Joshua Wing (CfA), Jasmina Lazendic-Galloway (Monash) and others... Environment affects the evolution of a star

Expanding shock-front

• The shock-front produced by the SNe expands and heats the stellar ejecta and swept-up ISM to X-ray emitting temperatures.

The remnants of a supernova

Discover the star we didn't see

- Determine the nucleosynthesis yield of the parent star.
- *Mass of the progenitor.*
- *Explosion mechanism:*
 - Type Ia SN have lots of iron
 - CC SN have lots of O, Ne, Mg, Si.

Silicon

Sulfur

The remnants of a supernova

A dense environment has a profound effect on the morphology and properties of SNRs.

Centrally peaked X-ray morphology

- Centrally peaked X-ray morphology which arises from a collisional hot plasma (Lazendic et al. 2006).
- These mixed-morphology SNRs are middle aged.

Highly asymmetric

SNRs known to be interacting with molecular clouds are less spherical and are more asymmetric than shell type SNRs.

Lopez et al. 2013

Enhancement & Rapid cooling.

- Strong X-ray lines imply super solar abundances of stellar ejecta.
 Expect to see ejecta only in young SNRs, not middle aged SNRs.
- Rapid cooling in the form of radiative recombination features.
 Only see in SNRs interacting with MCs.

Enhancement & Rapid cooling.

- Strong X-ray lines imply super solar abundances of stellar ejecta.
 Expect to see ejecta only in young SNRs, not middle aged SNRs.
- Rapid cooling in the form of radiative recombination features.
 Only see in SNRs interacting with MCs.

Fitting X-ray spectrum of W49B without recombination

RRC seen in red + recombination lines seen in orange and blue added to fit.

SNRs accelerate particles

- Forward shock (& reverse shock??) of a SNR can <u>accelerat</u>e particles
 - e.g., SN1006
- Lagage & Cesarsky (1983) applied diffusive shock acceleration to shell-type SNRs and concluded that:
 - Particles in SNRs can be accelerated up to 10 -100TeV.

Forward shock → synchrotron emission from multi-TeV e⁻

Chandra X-ray image(NASA/CXC/Middlebury College/F.Winkler)

Sources of gamma-rays

Surprising as MM SNRs are thought to have too slow of shocks but a significant of these a interacting with MCs.

Individual studies

Molecular Cloud

- ~1/3-1/2 of all MM SNRs have been studied by the Fermi-LAT.
 - E.g., Ackermann et al. 2010, Castro & Slane 2010, Auchettl et al. 2015....
- Significant fraction (1/3) of the GeV emitting SNR population!
 But only ~13% of Galactic SNRs.
- Emission dominated by pion decay. $p + p \longrightarrow \pi_0 + X \longrightarrow \gamma + \gamma + X$
- Density required to produce observed y-rays is much larger than that derived from X-ray studies.
 - Shock interacting with cold dense material that does not radiate in X-rays.

Global analysis

- However, each SNR is analysed slightly differently.
 - Different energies, data ranges and background models etc.
- *Difficult to determine whether:*
 - All MM SNRs emit in GeV γ-rays?
 - Do all have the same γ-rays properties?
 - *i.e., are they all pion decay?*
 - How do their properties differ from those of other GeV emitting SNRs?
 - How do these properties correlate with other wavelengths?
 - Why are they so special?

Table 1: Mixed Morphology Supernova Remnants					
Name	Other Names	Distance (kpc)	GeV gamma-ray emission?	OH masers?	Overionsed plasma?
G000.0+00.0	Sgr A East	8	-	-	-
G000.1-00.1		8	-	-	-
G001.0-00.1		8	-	-	-
G006.4-00.1	W28	1.9	Y	Y	Y
G007.5-01.7		1.7	-	-	-
G008.7-00.1	(W30)	4.5	Y	Y	-
G021.8-00.6	Kes 69	5.2	-	-	-
G031.9 + 00.0	3C391	8.5	Y	Y	Y
G033.6+00.1	Kes 79	9.4	Y	Y	-
G034.7-00.4	W44	2.8	Y	Y	Y
G038.7-01.3		4	-	-	-
G041.1-00.3	3C397	7.5	-	-	-
G043.3-00.2	W49B	10	Y	Y	Y
G049.2-00.7	W51C	6	Y	Y	-
G053.6-02.2	3C400.2	2.8	-	-	Y
G065.3 + 05.7		0.8	-	-	-
G082.2 + 05.3	W63	1.5	-	-	-
G085.4 + 00.7		3.5	-	-	-
G085.9-00.6		4.1	-	-	-
G089.0+04.7	HB21	0.8	Y	Y	-
G093.3 + 06.9	DA 530	2.2	-	-	-
G093.7-00.2	CTB 104A	1.5	-	-	-
G116.9 + 00.2	CTB 1	1.6	-	-	-
G132.7+01.3	HB3	2.2	Y	-	-
G156.2 + 5.7		2	-	-	-
G160.9 + 02.6	HB9	4	Y	-	-
G166.0+04.3	VRO 42.05.01	4.5	Y	-	-
G189.1+03.0	IC443	1.5	Y	Y	Y
G272.2-03.2		10	-	-	-
G290.1-00.8	MSH 11-61A	7	Y	-	Y
G304.6+00.1	Kes 17	8	Y	Y	Y
G311.5-00.3		2.3	-	-	-
G327.4 + 00.4	Kes 27	5	Y	-	-
G332.5-5.6		3	-	-	-
G337.8-00.1	Kes 41	9.5	Y	Y	-
G344.7-00.1		6.3	-	-	-
G346.6-00.2		7	-	Y	Y
G348.5 + 00.1	CTB 37A	11.3	Y	Y	Y
G349.7 + 00.2		11.5	Y	Y	-
G352.7-00.1		7.5	-	-	-
G355.6-00.0		13	-	-	-
G357.7-00.1	Tornado	11.8	Y	Y	-
G359.1-00.5		8	Y	Y	Y
G359.79-0.26		8 ₁	-	-	-

GeV properties of MM SNRs

- Consistently analyse >8 yrs of Fermi-LAT data of all MM SNRs.
- Generate: Spectra, detection signficance maps, count maps, etc.
- Characterise: y-ray emitting properties of these remnants.

GeV properties of MM SNRs

- Consistently analyse >8 yrs of Fermi-LAT data of all MM SNRs.
- Generate: Spectra, detection significance maps, count maps, etc.
- Characterise: y-ray emitting properties of these remnants.

GeV properties of MM SNRs

- Consistently analyse >8 yrs of Fermi-LAT data of all MM SNRs.
- Generate: Spectra, detection signficance maps, count maps, etc.
- *Characterise: γ*-ray emitting properties of these remnants.

X-ray properties of MM SNRs

- Rho & Petre (1998) analysed ~10 MM SNRs using ROSAT:
 - Uniform temperature Emission arises from ISM
- However more recent studies show they are more complicated.
- We systematically analyse archival X-ray data of all MM SNRs.

X-ray properties of MM SNRs

- Rho & Petre (1998) analysed ~10 MM SNRs using ROSAT:
 - Uniform temperature -Emission arises from ISM
- However more recent studies show they are more complicated.
- We systematically analyse archival X-ray data of all MM SNRs.

X-ray properties of MM SNRs

- Rho & Petre (1998) analysed ~10 MM SNRs using ROSAT:
 - Uniform temperature -Emission arises from ISM
- However more recent studies show they are more complicated.
- We systematically analyse archival X-ray data of all MM SNRs.

Type Ia MM SNRs interacting with molecular clouds.

Type Ia vs. CC MM SNRs.

MM SNRs produce X-ray synch.?

G346.6-0.2

Hard X-ray component consistent with:
1. Galactic Ridge Emission (located close to Galactic plane).

2. X-ray synchrotron emission (assuming upperlimit of B field derived from Zeeman).

3. Unidentified PWN.

Summary

- SNRs given an insight into the star we did not see.
- Dense environments dramatically affect the properties of SNRs.
 - In both X-ray and gamma-ray energy bands.
- Global studies can provide us with a wealth of knowledge about both the acceleration and plasma properties of MM SNRs.
 - Pion decay dominated?
 - *Type Ia vs. CC MM SNRs.*
 - Enhanced abundances?

- *Re-acceleration?*
- All overionised plasmas?
- *Flat temperature profile?*
- Any have non-thermal X-ray components consistent with particle acceleration?