~ with Patrick Slane (CfA), Daniel Castro '(NASA/GSFC.), Laura
" L opez (OSU), Nicole Man. (UCSC), Stephen Ng (HKU), Joshua

Unexpectedly Brlght

ngh energy. emlssmn from SNRS

:KatieAuchettl .- Sl 2. Gl
The Ohio'State University/CCARP P .

Wing (CfA) Jasmina Lazendlc -Galloway (I\/Ionash) and

others.. . ﬂ

. )
s






Expanding shock-front

« The shock-front produced by the SNe expands and heats the stellar
ejecta and swept-up ISM to X-ray emitting temperatures.
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he remnants of a supernova




Discover the star we didn’t see

Determine the nucleosynthesis yield of the parent star.
Mass of the progenitor.
Explosion mechanism:

« Type la SN have lots of iron

e CC SN have lots of O, Ne, Mg, Si.
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The remnants of a supernova

A dense environment has a
- profound effect on the morphology
and propertles of SNRs.




Centrally peaked X-ray morphology

* iShell type-SNR:
. .SN1006 =~ °

Ibgy SNR: -

« Centrally peaked X-ray morphology which arises from a
collisional hot plasma (Lazendic et al. 2006).

* These mixed-morphology SNRs are middle aged.
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Highly asymmetric

\

SNRs known to
be
Interacting with
molecular
clouds are less
spherical and
are more
asymmetric than
shell type SNRs.
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Kes 79 - Auchettl et al. 2014

Enhancement & Rapid cooling.

Strong X-ray lines imply super solar abundances of stellar ejecta.
— Expect to see ejecta only in young SNRs, not middle aged SNRs.

Rapid cooling in the form of radiative recombination features.
— Only see in SNRs interacting with MCs.
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Enhancement & Rapid cooling.

« Strong X-ray lines imply super solar abundances of stellar ejecta.
— Expect to see ejecta only in young SNRs, not middle aged SNRs.

« Rapid cooling in the form of radiative recombination features.
— Only see in SNRs interacting with MCs.
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Fitting X-ray spectrum of W49B RRC seen in red + recombination lines
without recombination seen in orange and blue added to fit.



SNRs accelerate particles

Forward shock

e

» Forward shock (& reverse e >
shock??) of a SNR can D, T synchrotron
] g . emission from
accelerate particles e P ultiTeV e
— e.9., SN1006

« Lagage & Cesarsky (1983)
applied diffusive shock
acceleration to shell-type SNRs
and concluded that:

— Particles in SNRs can be
accelerated up to 10 -100TeV.

=» SNRs can accelerate
cosmic rays!

Chandra X-ray image(NASA/CXC/Middlebury College/F.Winkler)



Sources of gamma-rays

Surprising as MM SNRs are thought to have too slow of shocks but a
significant of these a interacting with MCs.
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Individual studies

~1/3-1/2 of all MM SNRs have been
studied by the Fermi-LAT.
— E.qg., Ackermann et al. 2010, Castro &

Slane 2010, Auchettl et al. 2015.... ( ﬂ (, 3\ 2

Significant fraction (1/3) of the GeV L 2 \\F

emitting SNR population!
— But only ~13% of Galactic SNRs.

STOZ '[e 39 M3YaNY

Emission dominated by pion decay.

Density required to produce
observed y-rays is much larger than
that derived from X-ray studies.

IC falls below axis

— Shock interacting with cold dense — 8 4
material that does not radiate in X-rays. Log(Energy) (MeV)

EA2 dN/dE (erg cmA-
x
)
)



Global analysis

« However, each SNR is analysed
slightly differently.

— Different energies, data ranges
and background models etc.

« Difficult to determine whether:
— All MM SNRs emit in GeV y-rays?
— Do all have the same y-rays
properties?
* l.e., are they all pion decay?
— How do their properties differ

from those of other GeV emitting
SNRs?

— How do these properties correlate
with other wavelengths?

— Why are they so special?
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GeV properties of MM SNRs

Consistently analyse >8 yrs of Fermi-LAT data of all MM SNRs.
Generate: Spectra, detection signficance maps, count maps, etc.
Characterise: y-ray emitting properties of these remnants.

Detection

6.2+5.7 - i 7 G332.5-5.6 # Significance
- @ 'U' ) maps
1 of some

MM SNRs.
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GeV properties of MM SNRs

« Consistently analyse >8 yrs of Fermi-LAT data of all MM SNRs.
« Generate: Spectra, detection signficance maps, count maps, etc.
« Characterise: y-ray emitting properties of these remnants.
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GeV properties of MM SNRs

« Consistently analyse >8 yrs of Fermi-LAT data of all MM SNRs.
» Generate: Spectra, detection signficance maps, count maps, etc.
« Characterise: y-ray emitting properties of these remnants.

PRELIMINARY
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X-ray properties of MM SNRS

* Rho & Petre (1998) analysed ~10 MM SNRs using ROSAT:

— Uniform temperature —Emission arises from ISM
« However more recent studies show they are more complicated.
« We systematically analyse archival X-ray data of all MM SNRs.
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Milky Way.
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X-ray properties of MM SNRS

Rho & Petre (1998) analysed ~10 MM SNRs using ROSAT:

— Uniform temperature —Emission arises from ISM
However more recent studies show they are more complicated.
We systematically analyse archival X-ray data of all MM SNRs.
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X-ray properties of MM SNRS

* Rho & Petre (1998) analysed ~10 MM SNRs using ROSAT:

— Uniform temperature —Emission arises from ISM
« However more recent studies show they are more complicated.
« We systematically analyse archival X-ray data of all MM SNRs.

Median ionisation timescale
~2x10'' scm3:
Partial non-equilibration; all ions
are equilibrated, but without
electron-ion equilibration
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Most remnants show enhanced abundances of:
11 12 13 Mg, Si and S.
Logyo[lonisation timescale (s cm-3)] Most have abundances consistent w. CC SNRs?




Type Ia MM SNRs
interacting with molecular clouds.
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Type Ia vs. CC MM SNRs.

Sezer, Slane and Auchettl (2017), In prep. Type Il MM SNRs

Also have strong

GeV y-ray emission

(G346.6-0.2 MSH 11-61A

— e Type la MM SNRs.
CTB 37A

No evidence of

W28 GeV y-ray emission
_._

—
>
)
=
—
-
£
-
-
)
s
2
S Lo
S
v
Q
5
[
I
=
£

3C Bo1

G359,1-0.5 W44

272 2-3 2s0ft
G344.7-0.1s0ft S 397}
G337.2-0.soft %
G352.7-0.1soft

L i 1 i -1

0.6 0.8 1
Electron Temperature kT, (keV)




MM SNRs produce X-ray synch.?

G346.6-0.2 ' A single thermal

model struggles
to fit the data
above > 3.5 keV

Energy (keV)

[1 G1.9+03 @ SN 1006
m RX 713 (G3473-05) & Tycho
A Kepler «_ Vda Jr (G2662- 12)

{»RCW &6 * G346 6-0.2

g

Hard X-ray component consistent with:
1. Galactic Ridge Emission (located close to
Galactic plane).
2. X-ray synchrotron emission (assuming
upperlimit of B field derived from Zeeman).
3. Unidentified PWN. T

Fthermal (€rg s~'cm2)
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Summary

SNRs glven an |n3|ght into the star we dld not see.

Dense environments dramatically affect the properties
of SNRs.

* In both X-ray and gamma-ray energy bands.

Global studies can provide us with a wealth of
knowledge about both the acceleration and plasma
propertles of MM SNRs.

Pion decay dominated? * Re-acceleration?
* Typelavs. CC MM SNRs. » All overionised plasmas?
« Enhanced abundances? o Flat temperature profile?

« Any have non-thermal X-ray components consistent with particle
acceleration?



