High-energy neutrino interactions: first cross section measurements at TeV and above

Mauricio Bustamante

TeVPA 2017 August 10, 2017

Two seemingly unrelated questions —

1 Where are the most energetic particles coming from?

What is the structure of matter at the smallest scales?

SYMMETRY MAGAZINE

Neutrino interactions are weak

... but we are persistent

At center-of-mass energy of 1 GeV:

$$\begin{array}{rcl} \sigma_{\rho\rho} & \sim & 10^{-28} \ \ cm^2 \\ \sigma_{\gamma\rho} & \sim & 10^{-29} \ \ cm^2 \\ \sigma_{\nu\rho} & \sim & 10^{-38} \ \ cm^2 \end{array}$$

Neutrino interactions: what we (do not) know

< 1 MeV

Not observed — Coherent neutrino-nucleus scattering (just measured!), capture on radionuclei

1 MeV - 350 GeV

Lots of data — Quasi-elastic scattering, resonance production, deep inelastic scattering

> 350 GeV

Not observed — No high-energy neutrino beam available... til now

How does DIS probe nucleon structure?

What you see

Beneath the hood

Plus the equivalent neutral-current process (*Z*-exchange)

GIUNTI & KIM, Fundamentals of Neutrino Physics & Astrophysics

Peeking inside a proton

Extrapolating the neutrino cross section

Extrapolating the neutrino cross section

What can IceCube do?

How does IceCube see neutrinos?

Two types of fundamental interactions

... create two event topologies ...

 $\frac{\text{Tracks}}{\text{Made mainly by CC } \nu_{\mu}}$

How do we measure the cross section?

By looking at the angular distribution of events ----

- Earth absorbs neutrinos
- Absorption factor:

 $e^{-D(\theta_z)/L_{int}(E_v,\theta_z)}$

Interaction length:

$$L_{\text{int}} = \frac{m_N}{\sigma_{\nu N}^{\text{CC}+\text{NC}}(E_{\nu}) \cdot \langle \rho_{\oplus}(\theta_z) \rangle}$$

Where does the sensitivity to σ come from?

Number of contained events:

$$N \sim \Phi_{\gamma} \cdot \sigma_{\gamma N} \cdot e^{-\tau} = \Phi_{\gamma} \cdot \sigma_{\gamma N} \cdot e^{-L\sigma_{\gamma N}n_N}$$

Reality check:

Few events (per energy bin), so we are limited by Poissonian statistics

The IceCube HESE sample (6 years)

The IceCube HESE sample (6 years)

The IceCube HESE sample (6 years)

Flux vs. cross section

In each energy bin:

Downgoing events ($\tau\approx$ 0) —

 $\textit{N}_{down} \sim \Phi_{\nu} \ \sigma_{\nu\textit{N}}$

Upgoing events (0 < τ < 1) —

$$m{N}_{\mathsf{up}} = m{N}_{\mathsf{down}} \, m{e}^{- au} \propto m{N}_{\mathsf{down}} \, m{e}^{-\sigma_{
uN}}$$

Comparing N_{down} to N_{up} constrains the cross section

Sensitivity to σ_{vN} comes from attenuation, not detection

Bin-by-bin analysis

Bin-by-bin analysis

Bin-by-bin analysis

What events do we use?

- σ_{vN} varies with neutrino energy
- \blacktriangleright So, we should use events where deposited energy \approx neutrino energy
- We use IceCube High-Energy Starting Events (HESE):
 - vN interaction occurs inside the detector
 - ▶ \square Showers: completely contained in the detector ($E_{dep} \approx E_{\nu}$)
 - **Tracks:** partially contained ($E_{dep} < E_{v}$)

 We use only 58 HESE showers (ICRC 6-year IceCube HESE sample)

What goes into the (likelihood) mix?

Free parameters varied inside each energy bin:

- N^{atm}_{sh} (showers from atmospheric neutrinos)
- Nst_{sh} (showers from astrophysical neutrinos)
- γ (astrophysical spectral index)
- σ_{vN}^{CC} (neutrino-nucleon charged-current cross section)

Neutral-current showers are subdominant — we fix $\sigma_{\nu \textit{N}}^{\textit{NC}} = \sigma_{\nu \textit{N}}^{\textit{CC}}/3$

The result

Extending the cross section measurements

Extending the cross section measurements

Extending the cross section measurements

Caveats

► Limited statistics (for now) → Solvable with more IceCube + IceCube-Gen2 + KM3NeT

- Large errors in arrival directions give errors in attenuation → Solvable with improvements (talk by Tianlu Yuan) + KM3NeT
- ► Only constrains charged-current + neutral-current cross section → Solvable (?) with muon and neutron echoes (Li, MB, Beacom 16)
- Cannot separate v from \bar{v} \mapsto Wait for Glashow resonance
- ► Use starting tracks (easy) + through-going muons (less so) → Doable now by the Collaboration

Quo vadis: IceCube vs. ANITA/ARA/ARIANNA

Quo vadis: IceCube vs. ANITA/ARA/ARIANNA

Quo vadis: IceCube vs. ANITA/ARA/ARIANNA

Backup slides

The world of PDFs is messy

Different fitting groups

Different QCD prescriptions

A. COOPER-SARKAR 2012

Neutrino baseline inside the Earth

Earth density profile

From the Preliminary Reference Earth Model ----

Average Earth density

Neutrino interaction length inside the Earth

Neutrino absorption in the Earth

Angle-averaged neutrino absorption in the Earth

MB & A. Connolly, In prep.

Angular probability distribution for 4-yr HESE events

