Measuring High-Energy γ -Ray Spectra with HAWC

Sam Marinelli for the HAWC Collaboration

Michigan State University

August 9, 2017

S. S. Marinelli (MSU)

High-Energy Spectra with HAWC

August 9, 2017 1 / 13

The High-Altitude Water-Cherenkov observatory

- Detects TeV γ rays at 4100 m on the Sierra Negra mountain in Puebla, Mexico.
- 1200 PMTs in 300 water-filled tanks detect Cherenkov light from air showers.
- Timing used to determine shower direction.

HAWC tanks

HAWC energy estimation via artificial neural network (NN)

- Using Toolkit for Multivariate Analysis¹.
- NN maps several event-wise variables to estimate of primary energy.
- 479 free parameters chosen by training on Monte Carlo (MC).

¹http://tmva.sourceforge.net/.

NN input variables

• Input variables chosen to characterize shower size and geometry.

Shower characteristic	Input variables
Energy deposited in the detec-	 Fraction of PMTs hit Fraction of tanks hit Normalization of
tor	lateral-distribution fit
Fraction of ground energy	 Distance of shower core
landing on the detector	from detector center
Fraction of primary energy reaching the ground	 Zenith angle Lateral energy distribution

Performance on simulation

- NN energy better correlated with MC truth than currently used variable (fraction of PMTs hit).
- Ability to determine energies beyond 100 TeV.

RMS error

- RMS error of \sim 32% at highest energies.
- Use of lateral distribution compensates for fluctuations in height of first interaction.

- Events binned two-dimensionally in fraction of PMTs hit and NN energy.
- Poisson-likelihood forward-folded fit is applied to these bin contents.
- Crab modeled as point source with log-parabola γ -ray spectrum:

$$\frac{dN}{dE} = k \left(E/E_0 \right)^{-\alpha - \beta \ln(E/E_0)}.$$
(1)

• Fit serves as proof of principle for energy reconstruction but may also constrain high-energy Crab physics.

Crab fit result

- Statistical errors using new energy variables are smaller than in published HAWC result².
- Systematics analysis in progress. Assuming 50% flux systematic from published analysis, fits with new energy variables are compatible with H.E.S.S. measurement.

Light band – systematic error

²https://arxiv.org/abs/1701.01778.

HEGRA Crab Nebula spectrum (Aharonian et al. 2014)

• Stat. errors at highest energies comparable to HEGRA's. Might be improved with tuned cuts.

$\langle E \rangle$ [TeV]	$E_{\text{low}} - E_{\text{high}}$ [TeV]	$d\Phi/dE \pm \sigma_{stat}$ [(cm ² s TeV) ⁻¹]	N_{on}	$N_{off}{}^{\rm a}$	S^{b} $[\sigma]$
0.365	0.316-0.422	$(1.97 \pm 1.17) \cdot 10^{-10}$	105	333	3.9
0.487	0.422-0.562	$(1.76 \pm 0.24) \cdot 10^{-10}$	$\frac{369}{1012}$	705	14.1
0.649	0.562-0.750	$(8.78 \pm 0.53) \cdot 10^{-11}$		1356	29.8
0.866	0.750-1.000	$(4.02 \pm 0.13) \cdot 10^{-11}$	2119	2108	50.0
1.155	1.000-1.334	$(1.87 \pm 0.09) \cdot 10^{-11}$	2829	2772	58.2
1.540	1.334-1.778	$(9.05 \pm 0.26) \cdot 10^{-12}$	2458	2220	$56.1 \\ 48.9$
2.054	1.778-2.371	$(4.51 \pm 0.12) \cdot 10^{-12}$	2017	1600	
2.738 3.652	2.371-3.162 3.162-4.217	$(2.16 \pm 0.07) \cdot 10^{-12}$ $(9.33 \pm 0.36) \cdot 10^{-13}$	$1510 \\ 950$	$1114 \\ 645$	47.3 38.6
4.870	4.217-5.623	$(4.18 \pm 0.20) \cdot 10^{-13}$	579	330	31.7
6.494	5.623-7.499	$(1.93 \pm 0.12) \cdot 10^{-13}$	345	187	23.3
8.660	7.499-10.000	$(1.02 \pm 0.07) \cdot 10^{-13}$ $(2.28 \pm 0.21) \cdot 10^{-14}$	238	111	21.4
23.714	17.783-31.622	$(5.28 \pm 0.31) \cdot 10^{-15}$ $(5.28 \pm 0.70) \cdot 10^{-15}$ $(1.10 \pm 0.05) \cdot 10^{-16}$	150	242	10.2
42.170	31.622-56.234	$(1.10 \pm 0.25) \cdot 10^{-16}$	69	141	5.7
74.989	56.234-100.000	$(2.05 \pm 1.01) \cdot 10^{-16}$	36	104	2.7

Implications of measurement for PWN modeling

- Interpretation of HAWC result requires understanding at what energies spectrum is being measured.
- High-energy γ spectrum sensitive to highest-energy electron acceleration.

Models

- De Jager et al. model PWN high-energy inverse-Compton emission.
- Atoyan and Aharonian (1995) also suggest bremsstrahlung could play a role if PWN inhomogeneous.

Sensitivity to Lorentz-invariance violation

Lorentz-

invarianceviolating models predict γ decay to e^+e^- above some energy.

 Detection of high-energy γ rays constrains this energy scale.

 HAWC Crab spectrum will imply some limit.

Martínez-Huerta and Pérez-Lorenzana (2017).

Future work

- Crab analysis not yet optimized. Must tune cuts etc. to new spectral-fitting technique.
- Galactic plane in 56–100 TeV map, made with 1° extended-source model and assuming 2.63 spectral index, shows several known sources.
- With new energy variables, HAWC can attempt measurements of these sources' spectra at unprecedented energies.

Bonus round

• Backup slides.

Sensitivity to time variability

- Martín et al. numerically models time dependence of spinning down pulsar/PWN.
- Cooling time for PeV electrons is ~ 1 month.
- HAWC could look for spectral variations on this time scale.

