China

A hardronic Origin for the Highenergy Gamma Rays from the Largescale Disk of the Large Magellanic Cloud

Qing-Wen Tang^{1,2}

with Xiang-Yu Wang, Ruo-Yu Liu, Fang-Kun Peng and P.H.T. Tam [1] CCAPP , Ohio State University, USA (with John Beacom) [2] Department of Physics, Institute of Astronomy, Nanchang University,

- I. High-energy gamma rays from the star-forming galaxies
- II. Templates for LMC field
- III. Physical origin of gamma-ray emission from the LMC Disk
- IV. Conclusion

I. High-energy gamma rays from the starforming galaxies

- * Properties of Star-forming (SF) galaxies
 - * Large and intensive star-forming regions
 - * High gas density to form numerous stars
- * Example
 - * LMC, SMC
 - * M82, NGC 253 (starburst galaxy)

M82 [Chandra-HST-Spitzer]

Qingwen Tang

TeVPA 2017

CR-induced HE gamma rays (>~100MeV) SFR∝Lγ

Bremsstrahlung radiation

$$e_{\rm CR}^- + p_{\rm ISM}^+ \to e^- + p^+ + \gamma. \tag{2}$$

Up-scatter interstellar radiation

$$e_{\rm CR}^- + \gamma_{\rm ISRF} \rightarrow e^- + \gamma_{\gamma-{\rm ray}}.$$

Foreman+2015 ApJ 808, 44

Electron Emitted Photon

Detection of HE gamma rays in SF galaxies

M31 Fermi LAT Collaboration (2010) A&A 523, L2

LIR and ULIR SF galaxies (SFR \propto L_{IR})

Arp 220 Peng+2016 ApJ 820, L20

Fermi LAT detection

L_{IR} and $L\gamma$

Low energy break studies

- LMC
- spatially resolved in GeV Band
- Far from the Galactic plane, less contaminated by diffusion background than IC 443 and W44

A good sample to resolve its components in gamma rays!

Peng+ 2016 ApJL 820, L20

07/22

LMC gamma-ray break

TeVPA 2017

4517

4017

3511

3011

2511

2006

1506

II. Templates for LMC field

Table 3. Parameters of the 2D Gaussian sources model 2DG.

	Src.	ΔTS	$\alpha_{\rm J2000}$	δ_{J2000}	r95	σ	Flux
DISK	G1	1000.9	05 ^h 26.0 ^m	-68°16′	20'	73′ ± 5′	19.6 ± 2.2
30 Dor	G2	121.7	05 ^h 38.8 ^m	-69°18′	7'	$12' \pm 4'$	8.5 ± 2.2

First 11 months of Fermi-LAT observations

Template 1 +3FGL (T1)

Note: it is used in standard LAT analysis as of now.

6 years' observations of Fermi-LAT

Ackermann et. al. (2016) A&A 586, A71

Template 2 (T2)

- Remove the LMC field source in the 3FGL (LMC H I region)
- Add the P1 (PSR 0540-6919, N158A), P2 (PSR 0537-6910, N157B), P3 (Gamma-ray binary), P4 (SNR, N132D) and four extended sources (G1-G4)

Note: it is not employed in the standard LAT analysis.

Fermi-LAT analysis with 8 years' data

- * Data coverage:
 - 1. 2008-2016, 8years
- * Date base: P8_Source, 10°× 10° (ROI)
 - 1. 1-100 GeV
 - 2. 0.2-100 GeV
- * Template for LMC region :
 - 1. T1
 - 2. T2

First, any new sources detected?

Second, which one is better?

Template comparison with data of 8 years

- * T1: (Disk+30 Dor) + 3FGL sources
- * T2: G1-G4+P1-P4 (LMC field) +3FGL sources (outer of the LMC field)

* Significance maps, 1-100 GeV, 8 years. (Left) T1, (Right) T 2.

* Significance maps, 0.2-100 GeV, 8 years. (Left) T1, (Right) T2.

Candidates for the new point source S1

- * Search four catalogs for the candidate source
 - 1. CRATES Flat-Spectrum Radio Source Catalog
 - 2. Veron-Cetty Catalog of Quasars & AGN
 - 3. Candidate Gamma-Ray Blazar Survey Source Cata
 - 4. The ATNF Pulsar Catalog version 1.56

0.14² degrees

- * Only one source within r₉₅, **CRATES J044318-665155**.
- * 0.037 degrees away from the new point source.

RA	Dec	r_68	r_95
70.856	-66.833	0.056	0.091

Results

 T2 is a good template for modelling the gamma rays from the LMC observed by Fermi-LAT.

II. A new point source (S1) is detected near the LMC region.

Ⅲ. Physical origin of gamma-ray emission from the LMC Disk

Breaks between 0.06-2.0 GeV, evidence of pion-decay gamma

rays.

Ackermann et. al. (2013) Science, 339

SNRs in the LMC region

- 35

- 30

- 25

- 20

- 15

- 10

Low-energy data of LMC by LAT

* 0.06-2.45 GeV, with Model 2 Tang+2017 ApJ, 843,42

Detection of Low-energy Break

E (MeV)

Broadband Analysis Results of the G1 Component

Model	E GeV	Component	K ^a	Γ <mark>ι</mark> ^b	Γ_2^{c}	E _{br} d MeV	logL ₀ °	$\log L_1^{e}$	TS	∆TS ^e
PL	0.06 - 2.45	G1	4.0 ± 0.2	1.89 ± 0.03			-546725	-546350	750	
BPL			3.8 ± 0.1	1.48 ± 0.09	2.35 ± 0.11	497 ± 78		-546317	816	66
PL	0.06 - 100		4.1 ± 0.2	2.06 ± 0.02			-261700	-261305	790	
BPL			3.4 ± 0.1	1.39 ± 0.03	2.40 ± 0.03	532 ± 20		-261215	970	180

Modelling Results

* Pion decay model can be a better model!

Qingwen Tang		21/22 LMC gamma-ray break						TeVPA 201	7
			Re	sult	S				
		Derived Para	meters from the P	Table 3 hysical Models f	or the G1 Comp	onent			
Model	$n_{\rm H}~{\rm cm}^{-3}$	$B\mu G$	$U_{\rm ph}{\rm eVcm^{-3}}$	s_{e1}^{a}	s_{e2}^{a}	$E_{e,b}{}^{\mathbf{a}}$ MeV	s_p^{b}	$\chi^2/{ m dof}$	χ_r^{2c}
Bremsstrahlung ^d 	$0.39^{-0.03}_{+0.03}$ $1.14^{-0.10}_{+0.10}$	$2.99^{-0.17}_{+0.20}$ $4.94^{-0.31}_{+0.34}$	$7.80^{-3.15}_{+6.73}$ $0.81^{-0.62}_{+1.18}$	$1.39^{+0.11}_{+0.12}$ 2.00(fixed)			 	7.7/6 11.9/7	1.28 1.70
Bremsstrahlung with break ^e	$2.59^{+0.19}_{+0.19}$ $1.43^{-0.13}_{+0.14}$	$0.08^{-0.003}_{+0.004}$ $4.84^{-0.30}_{+0.35}$	0.01(fixed) 0.60 ^{-0.69} _{+1.34}	1.45 ^{-0.74} 1.80(fixed)	$2.41^{-0.06}_{+0.06}$ 2.25(fixed)	1318 ⁻³⁸² 4000(fixed)		6.7/5 14.3/7	1.33 2.04

...

...

...

7.6/9

 $2.45_{+0.14}^{-0.13}$

0.85

* It favors for the pion decay model.

...

...

...

 π^0 decay^f

IV. Conclusion

- * The template with 4 point sources and 4 extended sources is a good one to reproduce the LMC observations by Fermi-LAT.
- * A new point source S1 is detected significantly and possibly linked with a AGN.
- * The gamma-ray emission of the large-scale Disk of LMC favors for a hadronic origin, e.g., π° decay.

Thank you for your attention!