arXiv: 1706.00391 accepted by PRD

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Bing T. Zhang

Peking University, Penn State University

Collaborator: Kohta Murase, Foteini Oikonomou, Zhuo Li

Ultrahigh-Energy Cosmic Rays - Spectrum

1/14

Ultrahigh-Energy Cosmic Rays - Spectrum

UHECRs: cosmic rays with energy larger than $\sim 10^{18}~{
m eV}$

What is the composition?

Combined fit spectrum and composition data

Spectrum

Combined fit spectrum and composition data

Implications for the sources:

heavy nuclei

Intermediate mass, CNO, Ne, Mg, Si, ...

Hard spectra

Spectral index less than 2

Source evolution

Prefer no evolution or negative evolution

Where are the sources ?

Gamma ray bursts

Heavy nuclei from the interior of progenitor stars

Survival of nuclei :

For GRBs, it is difficult in high-luminosity GRBs but easy in low-luminosity GRBs.

Murase et al, 2006; Murase et al, 2008; Wang et al, 2007; Chakraborti et al, 2010; Liu et al, 2011; Horiuchi et al, 2012; Globus et al, 2014; Biehl et al, 2017

Where are the sources ?

Gamma ray bursts

Heavy nuclei from the interior of progenitor stars

Survival of nuclei :

For GRBs, it is difficult in high-luminosity GRBs but easy in low-luminosity GRBs.

Murase et al, 2006; Murase et al, 2008; Wang et al, 2007; Chakraborti et al, 2010; Liu et al, 2011; Horiuchi et al, 2012; Globus et al, 2014; Biehl et al, 2017

Active galactic nuclei Heavy nuclei from the interstellar medium The fraction of heavy nuclei is too low Re-acceleration (galactic CRs) model Kimura, Murase, BTZ, 2017

Heavy nuclei in Tidal disruption events

Main-sequence stars Solar composition

White dwarfs He, C, O, Ne, Mg

Composed of heavy nuclei

- Helium White dwarfs
- Carbon-oxygen White dwarfs
- Oxygen-neon-magnesium White dwarfs

CR acceleration in jetted TDEs

 $t_{\rm acc} = \eta \frac{E_A}{ZeBc}$

 $t_{\rm dyn} \equiv R/\Gamma\beta c$

First order Fermi acceleration

Forward shock Reverse shock

Internal shock Wind

Constrain maximum energy $t_{acc} \leq \min(t_{dyn}, t_{syn}, t_{A\gamma})$ Energy loss time scale Photodisintegration or photomeson

Internal shock model

CRs can be accelerated to ultrahigh energy

Difficult for UHECR nuclei to survive in luminous TDE jets such as Swift J1644+57

UHECR nuclei mainly lose one nucleon in each interaction

Inelasticity
$$\kappa_{A\gamma}(\bar{\varepsilon}) \equiv \frac{\Delta E}{E} = \frac{\Delta N}{N}$$

Interaction time scale

$$t_{A\gamma-\mathrm{int}}^{-1} \propto \sigma_{A\gamma}(\bar{\varepsilon})$$

Energy loss time scale

$$t_{A\gamma}^{-1} \propto \sigma_{A\gamma}(\bar{\varepsilon}) \kappa_{A\gamma}(\bar{\varepsilon})$$

Internal shock model

CRs can be accelerated to ultrahigh energy Difficult for UHECR nuclei to survive in luminous TDE jets such as Swift J1644+57

Forward shock model

Reverse shock: CRs can be accelerated to ultrahigh energy and survive Non relativistic wind: CRs cannot be accelerated to ultrahigh energy 8/14

Cosmic rays escaping from sources

CRs can be confined and lose their energies during diffusive escape

A harder spectrum $s_{\rm esc} < s_{\rm acc} = 2$

- Direct escape of CRs in internal shock Baerwald, Bustamante and Winter, 2013
- Escape from a relativistic decelerating blast wave Katz, Meszaros and Waxman, 2010 Two assumptions:

The number of ejected CRs is similar to the number of particles at radius R $\varepsilon N_{
m esc}(\varepsilon) \sim \varepsilon N(\varepsilon, R|_{\varepsilon_{
m max}=\varepsilon})$

The minimum, maximum and total cosmic ray energies are power low functions of the radius

$$E_{A,\min} \simeq \Gamma^2 A m_p c^2 \propto r^{-\alpha_{\min}} \quad E_{A,\max} \simeq Z e B r \propto r^{-\alpha_{\max}} \quad \mathcal{E}_{CR} \propto r^{-\alpha_{\mathcal{E}}}$$

The spectral index of escaped particles:

$$s_{\rm esc} = s_{\rm acc} - (\alpha_{\rm min}(s_{\rm acc} - 2) + \alpha_{\mathcal{E}})/\alpha_{\rm max}$$

UHECR nuclei injection spectrum

Results of MS - SMBH tidal disruptions

Results of CO WD - IMBH tidal disruptions

Results of ONeMg WD - IMBH tidal disruptions

Summary, conclusion and implications

The production of UHECRs in TDEs accompanied by relativistic jets

- Internal shock The survival is allowed for less powerful TDEs
- Forward shock Production and survival of UHECRs
- Reverse shock Production and survival of UHECRs
- Non-relativistic wind CRs can only be accelerated to ~ PeV
- Examine different composition models for TDEs
 - MS-SMBH Proton dominate in nearly all the energy range
 - CO-IMBH Poor fit to the spectrum

~ 1/30 CO WDs

- ONeMg-IMBH The number density of ONeMg WDs is lower than CO WDs
- WD-IMBH with ignition Difficult to reconcile Auger data Simulation resolution

Secondary gamma rays and neutrinos signals are of interest to test the model

- Cosmogenic neutrinos flux $E_{\nu}^{2} \Phi_{\nu} \sim 10^{-10} \text{ GeV cm}^{-2} \text{ sr}^{-1} \text{s}^{-1}$
- High energy gamma rays Gamma rays can escape from sources
 Neutron pion decay, photodeexcitation, Bethe-Heitler process