Signatures of Non-minimal Dark Matter

Linda Carpenter TevPA2017@OSU

Non-minimal model-indirect detection

Unbiased theoretical justification requires less than simplified model.

- One DM candidate?(Dark Sector)
- Single Mediator?
- Single SM Final State For Process?

Fermion Portal

Simplest EFT model: 1 operator 1 channel

$$\mathcal{L}_{f} = \frac{\kappa_{t}}{\Lambda_{t}^{2}} \chi \Gamma \overline{\chi} t \Gamma \overline{t} + \frac{\kappa_{b}}{\Lambda_{b}^{2}} \chi \Gamma \overline{\chi} b \Gamma \overline{b} + \frac{\kappa_{\tau}}{\Lambda_{\tau}^{2}} \chi \Gamma \overline{\chi} \tau \Gamma \overline{\tau} -$$

EFT to Simplified Model

EFT to Simplified Model

Minimal gauge mediation implies equality of squark or slepton masses.

Fermi Dwarf Analysis

Dwarf Spheroidal Galaxies large amount of DM Low Astrophysical Background

photon flux

$$\Phi_{\gamma} = \frac{1}{4\pi} \sum_{f} \frac{\langle \sigma v \rangle_{f}}{2m_{\chi}^{2}} \int_{E_{\rm min}}^{E_{\rm max}} \left(\frac{dN_{\gamma}}{dE_{\gamma}}\right)_{f} dE_{\gamma} J.$$
averaged annihilation xsec

averaged annihilation xsec

DM mass

Photon energy spectrum

Line of sight integral of DM density

$$J = \int_{\Delta\Omega} \int_{l.o.s} \rho^2(\mathbf{r}) dl d\Omega'.$$

Spectrum

DM annihilates to various SM final states each with a characteristic photon spectrum

Fermi Analysis combine 15 dwarf's with largest J factors, set 95% c.l. upper bound assuming 100% annihilation into a single channel, e.g. b's

TABLE I. Properties of Milky Way dSphs.

Ursa Major I

159.4 54.4

 18.3 ± 0.24

17101	L 1. 1	ropere	ics of ivii	iny way dopins.	_						
Name	ℓ^{a}	b^{a}	Distance	$\log_{10}(J_{\mathrm{obs}})^{\mathrm{b}}$	_						
	(deg)	(deg)	(kpc)	$(\log_{10} [\mathrm{GeV}^2\mathrm{cm}^{-5}$	l						
Bootes I	358.1	69.6	66	18.8 ± 0.22							
Canes Venatici II	113.6	82.7	160	17.9 ± 0.25							
Carina	260.1	-22.2	105	18.1 ± 0.23							
Coma Berenices	241.9	83.6	44	19.0 ± 0.25	10-21						
Draco	86.4	34.7	76	18.8 ± 0.16	10^{-21}		4 D 7 I i-			···	
Fornax	237.1	-65.7	147	18.2 ± 0.21		_	4-year Pass 7 Lir 6-year Pass 8 Lir				1
Hercules	28.7	36.9	132	18.1 ± 0.25	10^{-22}		Median Expected				-
Leo II	220.2	67.2	233	17.6 ± 0.18			68% Containmen				
Leo IV	265.4	56.5	154	17.9 ± 0.28	10^{-23}		95% Containmen				
Sculptor	287.5	-83.2	86	18.6 ± 0.18			,_	-			
Segue 1	220.5	50.4	23	19.5 ± 0.29	10^{-24}	-					
Sextans	243.5	42.3	86	18.4 ± 0.27	_						
Ursa Major II	152.5	37.4	32	19.3 ± 0.28	10^{-25}	-			::		
Ursa Minor	105.0	44.8	76	18.8 ± 0.19				255			1
Willman 1	158.6	56.8	38	19.1 ± 0.31	10-26					Thermal Relic	Cross Section
Bootes II ^c	353.7	68.9	42	_	10^{-26}					(Steigmar	n et al. 2012)
Bootes III	35.4	75.4	47	_	-	-					1
Canes Venatici I	74.3	79.8	218	17.7 ± 0.26	10^{-27}	Ī					$bar{b}$
Canis Major	240.0	-8.0	7	_			10^{1}	10^{2}		10^{3}	10^4
Leo I	226.0	49.1	254	17.7 ± 0.18			10		TT (2)	10	10
Leo V	261.9	58.5	178	_		DM Mass (GeV/c^2)					
Pisces II	79.2	-47.1	182	_							
Sagittarius	5.6	-14.2	26	_							
Segue 2	149.4	-38.1	35	_					ΔrX	(iv:1503.	02641
II M I	150.4	F 4 4	0.7	10.2 0.04					/ \1/		.U_U_T I

Choose DM mass and annihilation channel

Allow J factor to float with Least Log Likelihood $\Delta LG(\mathcal{L}) = (J_{bf} - J_{meas})^2 / (2\sigma_J^2)$ cost

Compare to null hypothesis no DM to set limit on upper bound of annihilation xsec in each bin with 95%~ LLL 2.71/2

4.0

No spectral Fitting

4.0

3.0

2.0 T

1.0

0

t-channel

$$\langle \sigma v \rangle (\bar{\chi} \chi \to f_i \bar{f}_i) = \frac{N_c^f g_i^4 m_\chi^2}{32\pi (M_i^2 + m_\chi^2)^2},$$

Fermion Portal

Simplest EFT model: 1 operator 1 channel

$$\mathcal{L}_{\mathrm{f}} = \frac{\kappa_{t}}{\Lambda_{t}^{2}} \chi \Gamma \overline{\chi} t \Gamma \overline{t} + \frac{\kappa_{b}}{\Lambda_{b}^{2}} \chi \Gamma \overline{\chi} b \Gamma \overline{b} + \frac{\kappa_{\tau}}{\Lambda_{\tau}^{2}} \chi \Gamma \overline{\chi} \tau \Gamma \overline{\tau} + \frac{\kappa_{\nu}}{\Lambda_{\nu}^{2}} \chi \Gamma \overline{\chi} \nu \Gamma \overline{\nu}.$$

Allow visible total annihilation rate below the thermal rate Without over-closing the universe

Light DM For now consider annihilation to b, τ and invisible channel

First Fix the Annihilation rate as desired

Dividing out by the total rate to define partial rate $R_i = \langle \sigma v \rangle_i/\langle \sigma v \rangle_{\rm tot}$

get a constraint between the partial annihilation rates

$$R_1 + R_2 + R_3 + \dots = 1.$$

Three Parameters and 1 constraint may be visualized on 2-D surface as triangle

The partial rates are saturated at the corners of the triangle

Pass 8

order 10s GeV min mass bounds even for visible annihilation rates at 30% of thermal rate

EFT bounds

Collider Limits

D1 operator

D9 operator

Conclusions

- For popular fermion (and other) portal models indirect detection has signif overlap with collider constraints especially given EFT limits
- Indirect and collider constraints do not in general align for model sets. a more systematic effort is needed to totally compare constraints

Extra

Upper bounds on DM-mediator coupling as a Function of mediator mass for vector model with g=1 Compared to EFT $D5 (\bar{\chi} \gamma^{\mu} \chi f \gamma_{\mu} f)$

 $m_V(GeV)$

Recall

$$\langle \sigma v \rangle (\chi \bar{\chi} \to V \to f \bar{f}) \Rightarrow \frac{N_c^f m_\chi^2}{2\pi [(M_V^2 - 4m_\chi^2)^2 + \Gamma_V^2 M_V^2]}$$

If $m\chi = 1/4 M_V^{(3/4M_V^2)^2} = 9/16 M_V^4$ where EFT predicts M_V^4

1500

$$\Lambda \sim m_V/\sqrt{g_\chi g_f}$$

