Ultra-High-Energy Cosmic Rays

Ralph Engel, *Karlsruhe Institute of Technology* (Many thanks due to colleagues of Auger and TA Collaborations)

UHECRs: How to make them

Hillas plot (1984)

⁽Kotera & Olinto, ARAA 2011)

(Unger, 2006)

X particles from:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces

•

Realistic constraints more severe

small acceleration efficiency
synchrotron & adiabatic losses
interactions in source region

Fragmentation function

QCD: ~ $E^{-1.5}$ energy spectrum QCD+SUSY: ~ $E^{-1.9}$ spectrum

UHECRs: How to get them to Earth

(Bergmann et al., PLB 2006)

Measurement of nucleus disintegration

UHECRs: How to get them to Earth

(Allard et al. 2007)

Coincidence of very similar suppression energy of p and Fe

 $E = A \Gamma m_p$

Energy threshold of suppression of nuclei scales with mass number (Giant dipole resonance at ~12 MeV lab.)

UHECRs: How to identify their sources

UHECRs: How to detect them

UHECRs: How to detect them

Pierre Auger Observatory and Telescope Array

Telescope Array (TA)

Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory

Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

Auger:

Together full sky coverage

 $6.7 \times 10^4 \text{ km}^2 \text{ sr yr}$ (spectrum) 9 x 10⁴ km² sr yr (anisotropy)

TA: 8.1 x 10^3 km² sr yr (spectrum) $8.6 \times 10^3 \text{ km}^2 \text{ sr yr}$ (anisotropy)

The Pierre Auger Observatory

Telescope Array (TA)

Middle Drum: based on HiRes II

Northern hemisphere: Utah, USA

Talk by Abu-Zayyad

Energy spectrum (all-particle flux)

(Auger-TA Spectrum Working Group)

What is the origin of the flux suppression at 6x10¹⁹ eV?

Are the energy spectra consistent with each other?

Telescope Array: spectrum with TALE

Low energy showers develop high in atmosphere Less light produced due to smaller number of secondary particles Viewed at small angle to shower axis Composition-dependent correction to go from calorimetric energy to total energy

Ś

 \times

imes sr⁻¹

(Abuzayyad, ICRC 2017)

TALE Spectrum Comparison

Best detection of second knee so far

Depth of shower maximum (Auger results)

Break in elongation rate just below energy of ankle

Shower-by-shower fluctuations very small

Comparison with TA results

TA: all showers with X_{max} in field of view (bias due to detector acceptance)

Auger-TA Working Group: data of the two experiments in agreement within the exp. uncertainties ($E < 10^{19} \text{ eV}$)

Change of model predictions thanks to LHC data

 $\Delta X_{\rm max} = -10 \,{\rm g/cm^2} + 8 \,{\rm g/cm^2}$ Sys. X_{max} uncertainty Auger: $\Delta X_{\rm max} = \pm 20 \,{\rm g/cm^2}$ TA:

post-LHC models

(Pierog, ICRC 2017)

LHC-tuned models should be used for data interpretation

(Wittkowski ICRC 2017)

Rigidity-dependent injection spectra with exp. suppression

$$\frac{dN}{dE} = J_0 \sum_{\alpha} f_{\alpha} E_0^{-\gamma} \begin{cases} 1 & \text{for } E_0/Z_{\alpha} < R_{\text{cut}}, \\ \exp(1 - \frac{E_0}{Z_{\alpha}R_{\text{cut}}}) & \text{for } E_0/Z_{\alpha} \ge R_{\text{cut}} \end{cases}$$

Results for different model scenarios (CRpropa), m=0

Source properties	4D with EGMF	4D no EGMF	1D no EGM	
γ	1.61	0.61	0.87	
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62	
f _H	3 %	11 %	0 %	
f _{He}	2 %	14 %	0 %	
	74 %	68 %	88 %	
f _{Si}	21 %	7 %	12 %	
f _{Fe}	0 %	0 %	0 %	

¹Homogeneous source distribution, see [A. Aab et al., JCAP 2017, 038 (2017)]

(Wittkowski ICRC 2017)

Results for different model scenarios (CRpropa), m=0

Source properties		4D with EGMF	4D no EGMF	1D no EGMF	
γ		1.61	0.61	0.87	
	$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62	
#	f _H	3 %	11 %	0 %	
f _{He}		2 %	14 %	0 %	
	$f_{ m N}$	74 %	68 %	88 %	
	<i>f</i> _{Si}	21 %	7 %	12 %	
	<i>f</i> _{Fe}	0 %	0 %	0 %	

Suppression of flux dominated by maximum injection energy

$$E_{\rm cut} = Z R_{\rm cut} \approx 7 \times 10^{18.6} \,\mathrm{eV} = 3 \times 10^{19} \,\mathrm{eV}$$

(Si about two times higher)

(Wittkowski ICRC 2017)

Results for different model scenarios (CRpropa), m=0

Source properties	4D with EGMF	4D no EGMF	1D no EGMF ¹	
γ	1.61	0.61	0.87	
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62	
f _H	3 %	11 %	0 %	
f _{He}	2 %	14 %	0 %	
f _N	74 %	68 %	88 %	
<i>f</i> _{Si}	21 %	7 %	12 %	
f _{Fe}	0 %	0 %	0 %	

Suppression of flux dominated by maximum injection energy

Very hard index of power law at injection

(Wittkowski ICRC 2017)

Results for different model scenarios (CRpropa), m=0

Source properties	4D with EGMF	4D no EGMF	1D no EGMF	
γ	1.61	0.61	0.87	
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62	
f _H	3 %	11 %	0 %	
f _{He}	2 %	14 %	0 %	
<i>f</i> _N	74 %	68 %	88 %	
<i>f</i> _{Si}	21 %	7 %	12 %	
<i>f</i> _{Fe}	0 %	0 %	0 %	

Suppression of flux dominated by maximum injection energy

Very hard index of power law at injection

Mainly primaries of the CNO and Si group injected, no Fe, very little p, p produced by spallation

(Wittkowski ICRC 2017)

Source evolution parameter	γ	$\log_{10}(R_{\rm cut}/{\rm eV})$	D_{\min}^2
<i>m</i> = 3	1.20	18.70	184
m = 0	1.61	18.88	192
<i>m</i> = −3	1.78	18.77	199
m = -6	1.95	18.77	202
<i>m</i> = −9	2.05	18.78	203

Fermi: low-luminosity, high-synchrotron peaked (HSP) BL Lacs

Large-scale anisotropy (Auger data)

Transition from galactic to extragalactic cosmic rays

Giacinti et al. JCAP 2012, 2015)

Simulation: Sources in galactic plane

Intermediate-scale anisotropy

Ursa Major Cluster (D=20Mpc)

Virgo Cluster (D=20Mpc)

> Centaurus Supercluster (D=60Mpc)

> > *Huchra, et al, ApJ, (2012)* Dots : 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

Perseus-Pisces Supercluster (D=70Mpc) Eridanus Cluster (D=30Mpc)Fornax Cluster

Intermediate-scale anisotropy – Hot spot (TA data)

With original 20° oversampling, spot looks larger.... Thus, scan over 15°, 20°, 25°, 30°, & 35°

Binsize	15		20		25		30		35	
	Local	Global								
Year 5	5.12	3.14	5.43	3.55	5.16	3.19	4.82	2.73	4.33	2.05
Year 7	4.92	2.84	5.37	3.44	5.65	3.80	5.37	3.44	5.03	2.99
Year 9	4.42	2.06	4.72	2.50	5.06	2.96	5.01	2.91	4.66	2.41

(Matthews, ICRC 2017)

With 25° oversampling, significance maximum 3σ

Intermediate-scale anisotropy – Warm spot (Auger data)

✓ Scan in parameters:

 $\begin{array}{l} E_{th} \text{ in [40; 80] EeV in steps of 1 EeV} \\ \Psi \quad \text{in [1°; 30°] in steps of 0.25° up to 5°, 1° for larger angles} \end{array} \end{array}$

(Giaccari ICRC 2017)

Anisotropy – Corr

Active Galactic Nuclei

- Selected from 2FHL Catalog (*Fermi*-LAT, 360 sources): $\Phi(> 50 \text{ GeV}) \longrightarrow \text{proxy for UHECR flux}$
- Selection of the 17 objects within 250 Mpc
- Majority blazars of BL-Lac type and radio-galaxies of FR-I type

Star-forming or Starburst Galaxies

Use of *Fermi*-LAT search list for star-formation objects (Ackermann+ 2012)

- 63 objects within 250 Mpc, only 4 detected in gamma rays: correlated $\Phi(> 1.4 \text{ GHz}) \longrightarrow \text{proxy for UHECR flux}$
- Selection of brightest objects (flux completeness) with $\Phi(> 1.4 \text{ GHz}) > 0.3 \text{ Jy}$
- 23 objects, size similar to the gamma-ray AGN sample

Assumption UHECRs flux proportional to non thermal photon flux

(Giaccari ICRC 2017)

γ-ray detected AGNs $f_{ani} = 7\%, \Psi = 7^{\circ}$ $TS = 15.2 \implies p \text{-value } 5.1 \times 10^{-4}$

Post-trial probability 3×10^{-3} (~ 2.7 σ)

Starburst Galaxies $f_{ani} = 10\%, \Psi = 13^{\circ}$ $TS = 24.9 \implies p \text{-value } 3.8 \times 10^{-6}$

Post-trial probability 4×10^{-5} (~ 3.9 σ)

Anisotropy – Correlation with catalogs (Auger data)

Starburst galaxies

Observed Excess Map -

preliminary

Model Excess Map - St

NGC1068

30

20

10

0

-10

events per beam **NGC 253 2.5 Mpc**

NGC 1068 16.7 Mpc

Residual Map - Starburst galaxies - E > 39 EeV

<mark>-</mark>15 10

AGNs

(Giaccari ICRC 2017)

- Complicated and unexpected picture of UHECR emerging (More composition and anisotropy data needed)
- Source models have to be more sophisticated than simple power laws (environment+escape, local large-scale structure, different sources)

injected

- Multi-messenger data crucial for model building
- Further progress in modeling hadronic interactions required for reliable composition studies
- Auger and TA:
 - independent analyses
 - joint warking groups
 - very productive interaction

n₀ dN/dlgE/dt [a.u.] C

10⁻²

17.5 20.5 19.5 20 18 18.5 19

lg(E/eV)

 $1 \le A \le 2$

 $3 \le A \le 6$ $7 \le A \le 19$ $20 \le A \le 40$ $40 \le 6$

 $\gamma_{ini} = -1.00$ f(28) = 1.0e + 00 $lg(E_{max}^{p}/eV) = 18.5 \pm 0.008$ $Ig(R_{asc}^{Fe19}) = 2.44 \pm 0.01$ $\delta_{esc} = -1.00$ $f_{gal} = 0.558 \pm 0.01$ $\gamma_{gal} = -4.18 \pm 0.03$ $lg(E_{max}^{gal}/eV) = 19.0$ $f_{noPhot} = 0.00$ έ_{17.5} = 8.2e+44 $\epsilon_0 = 0.05 \text{ eV}$ **α=2.5**, β**=-2** $\Delta IgE_{sys} = 0, n_{sys}(X_{max}) = 0 \sigma$ χ^2 /ndf = 502.018/62

(Aloisio et al. JCAP 2015)

(Ahlers, Heinze et al.)

Neutrino and gamma-ray fluxes

TAx4 Project

TA SD (~3000 km²): Quadruple area

Approved in Japan 2015

500 scintillator SDs

2.08 km spacing

3 yrs construction, first 173 SDs have arrived in Utah for final assembly, next 77 SD to be prepared at Akeno Obs. (U.Tokyo) 2017-08 and shipped to Utah

2 FD stations (12 HiRes Telescopes)

Approved US NSF 2016 Telescopes/electronics being prepared at Univ. Utah Site construction underway at the

northern station.

Get 19 TA-equiv years of SD data by 2020

Get 16.3 (current) TA years of hybrid data

(Kido, Matthews ICRC 2017)

Upgrade of Auger Observatory: AugerPrime

(Martello, ICRC 2017)

(AugerPrime design report 1604.03637)

Status and plans for AugerPrime

Backup slides

Photon and neutrino limits at ultra-high energy

Physics reach: mass sensitivity & discrimination of scenarios

Physics reach: detection of 10% proton contribution

Significance of distinguishing scenarios

(ideal case for knowing proton predictions without uncertainty due to had. int. models)

Physics reach: composition-enhanced anisotropy

Modified Auger data set $(E > 4 \times 10^{19} \text{ eV}, 454 \text{ events},$ ApJ 804 (2015)15)

 X_{max} assignment according to maximum rigidity scenario

10% protons added, half of which from within 3° of AGNs

(AugerPrime 1604.03637)

all 454 events

proton depleted *data set (326)*

proton enhanced data set (128)

Particle physics with the upgraded Auger Observatory

Results on muon number of showers still not understood, important effect missing in models?

(Auger Collab. Phys. Rev. D91, 2015 & ICRC 2015)

2.6 2.4 2.2 2 1.8 1.6 1.4 1.2

 ρ_{μ} (Mod) / ρ_{μ} (QII, p)

Example of power of upgraded detectors

Overview of AugerPrime: items needed to make things work

- 1. Installation of 1700 scintillation detectors (3.8 m², 1cm thick)
- 2. Installation of **new electronics** (additional channels, 40 MHz -> 120 MHz, better GPS timing)
- 3. Installation of **small PMT** in water-Cherenkov detectors for increasing dynamic range: typical lateral distance of saturation reduced from ~500 m (E > $10^{19.5}$ eV) to 300 m
- 4. Cross checks of upgraded detectors with direct muon detectors shielded by 2.3 m of soil (AMIGA, 750 m spacing, 61 detectors of 30 m², 23.4 km²)
- 5. Increase of FD exposure by ~50% (lowering HV of PMTs)

N

 σ [X $_{max}^{rec}$] /g cm

