Cosmic-ray and gamma-ray anomalies and their interpretations

Columbus, OH August 9th, 2017

Daniele Gaggero

A new epoch of precision measurements

A new epoch of precision measurements

Anomalies with respect to what?

...with respect to *theoretical predictions*? what do theories predict?

• CR acceleration: diffusive shock acceleration theory ["Bobalski": Bell 1978, Ostriker&Blandford 1978, Axford et al. 1977, Krimskii 1977]

• CR transport: QLT of resonant pitch-angle scattering on Alfvén **waves** [Jokipii 1966, Ginzburg&Syrovarskii 1964, ...]

- CRs diffuse in the ISM on small fluctuations in the magnetic field; turbulent field can be modeled by a Kolmogorov isotropic power spectrum
- in their simplest form they predict featureless and universal spectra
- key aspects: self-similarity of DSA theory, Kolmogorov turbulence...
- adequate to pre-PAMELA data

Anomalies with respect to what?

- codes
- set of "conventional models" \rightarrow anomalies "w.r.t. conventional model predictions"

usually standard scenarios are defined by:

- isotropic, homogeneous diffusion (is it compatible with QLT?)

TeVPa 09/08/2017

basic theories used as guidelines for *standard parametrizations* implemented in numerical

• one source class (SNRs), universal featureless source spectrum (but sometimes breaks are introduced)

Anomalies with respect to what?

a much more complicated theoretical picture is expected

(different acceleration mechanisms in different classes of sources; anisotropic and inhomogeneous transport; non linearities and CR self-confinement...)

 the data and their anomalies offer now the opportunity to investigate the impact of more complicated theoretical pictures

TeVPa 09/08/2017

... let's go and look for spectral features!

Part 1: charged CR anomalies

CR anomalies: Spectral features in p, He

An important discovery by PAMELA: proton and He spectral breaks at ~200 GV

PAMELA Measurements of Cosmic-Ray Proton and Helium O. Adriani^{1,2}, G. C. Barbarino^{3,4}, G. A. Bazilevskaya⁵, R. Bellotti^{6,7}, M. Boezio⁸, E. A. Bogomolov⁹, L. Bonechi^{1,2}, M. Bongi², V. Bo...

+ See all authors and affiliations

Science 01 Apr 2011: Vol. 332, Issue 6025, pp. 69-72 DOI: 10.1126/science.1199172

CR anomalies: Spectral features in p, He

Proton/He break: A source effect?

- A new population of sources kicking in? •
- [Zatsepin&Sokolskaya 2008, pre-AMS]
- Possible role of superbubbles? [Ohira et al., PRD 2016; • Parizot et al., A&A 2004, pre-AMS]

- Non-linear DSA? [Ratuskin et al., ApJ 2013]
- The fingerprint of \hat{f} a local supernova event (below the break)? [Kachelriess et al., PRL 2015; Tomassetti&Donato AlpJ 2015; Tomassetti ApJLo 2015] Kinetic Energy (GeV)

 $R^{max} = 10 TV$

How likely is such a relevant local fluctuation? the probability seems to be low [Genolini et al., A&A 2017]

Models	PAMELA		AMS02	
	50GeV	1TeV	50GeV	1TeV
Model	$p\left(\Psi > \langle\Psi\rangle + 3\sigma\right)$	$p\left(\Psi>\langle\Psi\rangle+3\sigma\right)$	$p\left(\Psi > \langle \Psi \rangle + 3\sigma\right)$	$p\left(\Psi > \langle\Psi\rangle + 3\sigma\right)$
	$p\left(\Psi < \langle\Psi\rangle - 3\sigma\right)$	$p\left(\Psi < \langle\Psi\rangle - 3\sigma\right)$	$p\left(\Psi < \langle \Psi \rangle - 3\sigma\right)$	$p\left(\Psi < \langle \Psi \rangle - 3\sigma\right)$
MIN	0.15	0.083	0.28	0.26
	0.13	< 10 ⁻⁶	0.63	0.51
MED	0.047	0.014	0.16	0.12
	< 10 ⁻⁶	< 10 ⁻⁶	0.26	0.0025
MAX	0.009	0.0018	0.045	0.016
	< 10 ⁻⁶	< 10 ⁻⁶	Genolini et al A&A	
			denomini et al., AdA	
			2017	

Proton/He break: A Transport effect?

crucial observables [Genolini et al., 2017]

- source effects: secondaries inherit the primary feature: B/C should be featureless (secondaries originate from spallation, which preserve E/A; E/A is proportional to the rigidity)
- propagation: B/C should show a break; Lithium should show a more pronounced break

TeVPa 09/08/2017

Is the break due to transport? secondary spectra and secondary/primary ratios such as B/C are

• transport effect: secondaries inherit the primary feature and get a further hardening due to

Proton/He break: A Transport effect?

- Different transport properties in the disk w.r.t. the halo? [Tomassetti, PRD 2015] •
- A possible transition between different transport regimes?
 - low energies: propagation in self-generated (via streaming instability) turbulence high energies: propagation in pre-exisiting turbulence [Blasi, Amato, Serpico, PRL 2012; Aloisio,
 - Blasi, Serpico 2015]

CR anomalies: Leptons (low and high energy)

Many issues under debate!

• often overlooked

10

e[±] energy [GeV]

10²

- Primary positron source? Pulsar wind nebula are a natural candidate; acceleration mechanism different from DSA: spectrum harder than E⁻²

TeVPa 09/08/2017

challenging from model-building point of view; in tension with CMB constaints

CR anomalies: Antiprotons

Crucial observable for DM studies

• *High energy*: Is there really an anomaly? Currently just a $\sim 2\sigma$ hint

• Low energy: Is there a feature possibly correlated to the GeV gamma-ray excess, and possibly originating from DM annihilation?

Further investigation is needed.

 Different choices of background parametrization?

An interesting coincidence

Part 2: anomalies inferred from y-rays

TeVPa 09/08/2017

NASA's Fermi telescope reveals best-ever view of the gamma-ray sky

y-ray anomalies: hardening & gradient

y-ray anomalies: GeV-TeV connections

Under the assumptions that: 1) the proton break at ~200 GV is present all through the Galaxy, 2) the diffusion coefficient has a harder rigidity dependence, as suggested by Fermi-LAT data

CR hardening in the inner Galaxy. Explanation I: Non-linear physics?

CR transport equation

$$\frac{\partial f}{\partial t} + v_A \frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right]$$

Diffusion coefficient as a function of magnetic turbulence

$$\begin{aligned} D(p, z, t) &= \frac{r_L v}{3} \frac{1}{\mathcal{F}(k, z, t)} \Big|_{k=1/r_L} \\ \frac{\partial B^2}{B_0^2} &= \int \mathcal{F}(k) \frac{dk}{k} \end{aligned}$$

Growth-damping balance of self-generated magnetic turbulence

$$\frac{\partial \mathcal{F}}{\partial t} + v_A \frac{\partial \mathcal{F}}{\partial z} = (\Gamma_{\rm CR} - \Gamma_D) \mathcal{F} + Q_w$$

growth rate $\Gamma_{\rm CR} = \frac{16\pi}{3} \frac{v_A}{\mathcal{F} B_0^2} \left[p^4 v \nabla f \right] \Big|_{p=p_{\rm res}}$

TeVPa 09/08/2017

Recchia, Blasi, Morlino 2016

Stronger CR gradients

- —> more effective self-confinement
- -> low diffusion coefficient
- -> advection takes over at larger energies
- -> propagated spectrum closer to the inj. one

CR hardening in the inner Galaxy. Explanation II: Anisotropic transport GeV-TeV CR transport is expected to be highly anisotropic (resonant scale: 1 - 1000 AU, QLT holds)

Different scalings of parallel and perpendicular diffusion

Improved modeling of large-scale topology of the Galactic magnetic field: poloidal component in the inner Galaxy

Enhanced parallel direction in the inner Galaxy

y-ray anomalies: The giant monsters in the sky

GeV excess

TeVPa 09/08/2017

Fermi bubbles

'Pa 09/08/2017

he giant monsters in the sky

terpretation

nnel studies are needed
dwarf galaxy constraints?
with antiprotons)

A. Cuoco et al. 2017

MSP interpretation suggested by wavelet analyses connection with 511 keV signal (see R. Bartels talk)

• Alternative interpretation De Boer et al. 2017 in terms of CR interacting with MCs

- The CR and gamma-ray data finally offer the unique opportunity to move beyond a simplistic picture of CR acceleration and propagation
- Anomalies exist in all channels

- HAWC, CALET, HERD, ...) domain

Conclusions

• A lot of exciting work for theorists and phenomenologists working on CR transport codes

• Dark matter detection claims are still under debate. Astrophysical interpretations seem to be preferred in all cases. A solid detection in several independent channels is needed.

Looking forward to more data both in low-energy (e-ASTROGAM) and high-energy (CTA,

Thank you for your attention!

Back

up slides