The Magnetic reconnection model for blazar emission

Dimitrios Giannios

Purdue, Department of Physics and Astronomy

Collaborators: Maria Petropoulou, Lorenzo Sironi, Ian Christie

TeVPA Columbus, OH, August 10, 2017

Blazars: Jets in AGN moving towards us

Blazar

Blazars: bright at all frequencies

Blazars flaring from weeks down to ~5 minutes!

Basic Observed/inferred properties of blazars

Effective particle accelerators up to multi TeV energies, at least

Efficient radiators ~10% radiative efficiency or more!

Radiating particles and magnetic field in, very rough, equipartition:

$$U_e \sim U_B$$

Extreme variability variable t_{var} << R_g/c in some cases!

SSC model fit of the spectral energy distribution of Mrk 421

Source of blazar flares: "Blobs" of energetic *e* and *B* fields

$$R_{\rm em}$$
 £ $dct_{\rm flare} \sim 5 \times 10^{14} d_{50} t_{300}$ cm
Doppler factor $\delta = [\Gamma_{\rm em} (1 - \beta_{\rm em} \cos \theta)]^{-1} \sim \Gamma_{\rm em}$
Notation: $d=50 d_{50}$, $t=300 t_{300} s$

Stringent requirements for emitting region

Emitter must be very compact and extremely fast and form at ~1 pc distance!

Some big questions:

Which process accelerates the particles that radiate? What determines the distance & size/shape of the emitting region?

A theory view of jets

Magnetic reconnection due to MHD instabilities in jets

Magnetized jets may be prone to the kink instability

Eichler 1993; Begelman 1998; Nakamura & Meier 2004; Giannios & Spruit 2006; Moll 2009; McKinney & Blandford 2009; Mignone et al. 2010; Porth & Komissarov 2015

Barniol-Duran, Tchekhovskoy & Giannic

A very promising dissipative mechanism: Magnetic Reconnection

ticles

Disk

Disk

Reconnection Plasmoids = Blazar Blobs?

Giannios et al. 2009; 2010; Giannios 2013

- Current sheet fragments to plasmoids Loureiro et al. 2007; Uzdensky et al. 2010; Loureiro et al. 2012+++
- Plasmoids merge/grow fast leaving the layer at $V_A \sim c$
- CR Large plasmoids can power blazar flares Giannios 2013

Magnetic reconnection from first-principle simulations

Sironi & Spitkovsky 2014; Sironi, Petropoulou & Giannios 2015; Sironi, Giannios & Petropoulou 2016; Petropoulou, Giannios & Sironi 2016

Particle acceleration from first principle simulations

Sironi, Petropoulou & Giannios 2015

(1) Relativistic reconnection is efficient

$$f_{\rm rec} \equiv \frac{\sum_{i} \int_{V_i} U_{\rm e} dV_i}{\sum_{i} \int_{V_i} (e + \rho c^2 + U_{\rm B}) dV_i}$$

(Sironi, Petropoulou, Giannios 15)

Relativistic reconnection:

√ it transfers ~ 50% of the flow energy (electron-positron plasmas) or ~ 25% (electron-proton) to the emitting particles

(2) Equipartition of particles and fields

Blazar phenomenology:

rough energy equipartition between emitting particles and magnetic field

Relativistic reconnection:

√ in the magnetic islands, it naturally results in rough energy equipartition between particles and magnetic field

(3) Extended non-thermal distributions

Blazar phenomenology:

extended power-law distributions of the emitting particles, with hard slope

$$\frac{dN}{dg} \mu g^{-p}$$
, $p \pm 2$

(Sironi & Spitkovsky 14, Guo et al. 14, Werner et al. 14)

Relativistic reconnection:

√ it produces extended non-thermal tails of accelerated particles, power-law slope can be harder than p=2

(4) Extreme temporal variability?

Blazar phenomenology:

at TeV energies, fast (~10 minutes) flares on a high-state envelope lasting for ~days

From first principle simulations to lightcurves

Sironi, Giannios & Petropoulou 2016

From simulations to lightcurve: Single Plasmoid

Petropoulou, Giannios & Sironi 2016

Small & Fast Plasmoid

Large & Slow plasmoid

From simulations to lightcurve: the whole reconnection layer

Christie et al., in prep.

Power Density Spectrum

Concluding

- Jets are observed to be efficient particle accelerators, highly variable
- * Magnetic reconnection can produce fast variability, efficient particle acceleration, equipartition conditions
 - ❖ Blazar "blobs" = reconnection plasmoids?
- Lots of work left
 - Connection to the large-scale jet
 - long wavelength emission (larger scales)
 - polarization (radio through gamma-rays)

Large-scale jet and emission

Magnetic reconnection in the jet

- ✓ Jet may contain field reversals on small scale ~100 R_g
- magnetic-reconnection becomes effective when

$$r_{diss} / G_j c \sim 100 G_j R_g / ec$$

 $r_{diss} \sim G_j^2 100 R_g / e \sim 1 M_8 G_{j,10}^2 e_{-1}^{-1} pc$