Thermal Dark Matter Below an MeV

ASHER BERLIN

TeVPA, Ohio State University August 9, 2017

Collaboration with Nikita Blinov, arXiv: 1706.07046

Thermal Contact

thermal dark matter

noun

Definition of THERMAL DARK MATTER

: dark matter that acquired its cosmological abundance through thermal contact with the Standard Model bath at large temperatures.

First Known Use: 1970s

N_{eff}

$\frac{\text{DM-Neutrino Equilibration}}{N_{\text{eff}} \simeq 3 \left(1 + \frac{4}{21} g_{\chi}\right)^{4/3} \gtrsim 3.78$

Sub-MeV: BBN + CMB

Sub-MeV: BBN + CMB

 $N_{\rm eff} \ ({\rm BBN}) \simeq 2.85 \pm 0.28$

K. Nollett, G. Steigman, arXiv:1411.6005

Sub-MeV: BBN + CMB

 $N_{\rm eff} \ ({\rm BBN}) \simeq 2.85 \pm 0.28$

How ubiquitous is DM-SM Equilibration Before Neutrino-Photon Decoupling ?

How ubiquitous is DM-SM Equilibration Before Neutrino-Photon Decoupling ?

DM-Neutrino Equilibration

$$N_{\rm eff} \simeq 3 \, \left(1 + \frac{4}{21} \, g_{\chi}\right)^{4/3} \gtrsim 3.78$$

Sub-GeV thermal DM requires light mediators: $m_{\varphi} \sim m_{\chi}$

B. Lee and S. Weinberg, Phys.Rev.Lett. 39 (1977) 165-168

 \sim 1 / T \rightarrow

Light thermal DM naturally *enters* equilibrium (for high enough T_{RH})

$\frac{\text{DM-Neutrino Equilibration}}{N_{\text{eff}} \simeq 3 \left(1 + \frac{4}{21} g_{\chi}\right)^{\cancel{41/3}} \gtrsim 3.18$

Neff

Thermal History

Thermal History

Thermal History

 $\sim~1$ / T

 $\mathcal{L} \sim \varphi \left(\lambda_{\chi} \ \chi^2 + \lambda_{\nu} \ \nu^2 \right)$

 $m_\phi \lesssim m_\chi$

(Freeze-Out) (Equilibration and Decay)

A Toy Model $\mathcal{L} \sim \varphi \ \left(\lambda_{\chi} \ \chi^2 + \lambda_{\nu} \ \nu^2\right)$

Summary

- Sub-MeV DM that freezes-out thermally with the SM is possible.
- Equilibration predicts a limited range for DM-SM coupling.
- CMB-S4 and 21 cm observations will be sensitive to the entire parameter space.

Back Up Slides

$$N_{\rm eff} \simeq 3 \left(1 + \frac{4}{21} g_{\chi} \right)^{4/3} \gtrsim 3.78$$

$$N_{\text{eff}} \simeq 3 \left(1 + \frac{4}{21} g_{\chi}\right)^{41/3} \gtrsim 3.18$$

(~"cyclic", but dS > 0)

$$N_{\text{eff}} \simeq 3 \left(1 + \frac{4}{21} g_{\chi}\right)^{41/3} \gtrsim 3.18$$

Neff

