Searching for Dark Matter Annihilation in Milky Way Satellite Galaxies

Alex Drlica-Wagner Fermilab

> TeVPA-2017 August 9, 2017

Fermi Gamma-Ray Space Telescope

Milky Way Satellite Galaxies

http://www.symmetrymagazine.org/article/our-galactic-neighborhood

Milky Way Satellite Galaxies

Dark Matter Halo Size
LAT Resolution (68%/95%)

Dwarf Galaxy Constraints

Quanta Magazine & Kev Abazajian

Quanta Magazine & Kev Abazajian

Looking Forward

Dwarf Galaxy Discovery Timeline

Gamma-ray Observations

ermi

- Find 4 targets with ~2σ local significance excesses
- Significance drops to ~1.6σ with a trials factor for mass and channel
- << 1σ after including a trials factor from searching 45 locations

But dwarfs should not be weighted equally (i.e., different J-factors)...

Predicted J-factors

21.0 Geringer-Sameth et al. 2015 Martinez et al. 2015 Bonnivard et al. 2015a Simon et al. 2015 Bonnivard et al. 2015b J-Factor $(\log_{10}(J/\text{GeV}^2 \text{ cm}^{-5}))$ 20.5Walker et al. 2015 20.0 19.519.0 18.518.0 17.5 $J_{\rm pred}(100\,{\rm kpc}) = 18.1\,{\rm GeV^2\,cm^2}$ $J_{\rm pred}(100\,{\rm kpc}) = 18.3\,{\rm GeV^2\,cm^{-5}}$ 17.0 $J_{\rm pred}(100\,{\rm kpc}) = 18.4\,{\rm GeV^2\,cm^{-5}}$ $16.5 \ 10^{1}$ 10^{2} 10^{2} 10^{1} 10^{1} 10^{2}

Distance (kpc)

Spectroscopic follow-up on ultra-faint dwarfs is difficult and expensive.

J-factors can be estimated based on distance under the assumption that they are dark matter dominated.

sermi

ENERGY SURVEY

Search for Gamma Rays

Gamma-ray Observations

ermi

J-factor Uncertainties

A Lot of Sky to Cover!

Working to cover this area with DECam Talk in Cosmology Session at 15:15

sermi

Gamma-ray pace Telescop

ENERGY SURVEY

A Lot of Surface Brightness to Cover!

Dermi

LSST is Coming!

LSST is Coming!

Backup Slides

Most significant gamma-ray excess for any new target found at gamma-ray energies between 2 to 10 GeV in the direction of Reticulum II

	LAT Data Set	Local Significance	Post-trials for DM mass and annihilation channel
<i>Fermi</i> -LAT + DES	Pass 8	2.2 σ	1.65 σ
Geringer-Sameth et al.	Pass 7	2.8 σ	2.3 σ
Geringer-Sameth et al.	Pass 8	2.0 σ	1.6 σ
Hooper & Linden	Pass 7	3.2 σ	No trials, use best-fit from Galactic Center

Also, possible blazar PMN J0335–5046 located ~0.1 deg away

LAT & DES Collaborations Drlica-Wagner et al. 2015 arXiv:1503.02632

Geringer-Sameth et al. 2015 arXiv:1503.02320

Hooper & Linden arXiv:1503.06209

Consistency with dark matter interpretation depends in part on expected signal strength (i.e., "J-factor") relative to other dSphs

∍ermi

Gamma-ray

ENERGY SURVEY

J-factor Estimates

23

Simon et al. ApJ 808, 95 (2015)

Bonnivard et al. ApJ 808, L36 (2015)

J-factor vs Gamma-ray Flux

