

CDM a success!

CDM typically assumed to be collisionless, i.e. $\frac{\sigma}{m_{\chi}} = 0$.

How good is this assumption?

CDM a success!

CDM typically assumed to be collisionless, i.e. $\frac{\sigma}{m_{\chi}} = 0$.

How good is this assumption?

The Sausage Cluster Jee+ 2015

a galaxy cluster contains

dark matter

a galaxy cluster contains

collisionless galaxies

dark matter

a galaxy cluster contains

galaxies

dark matter

collisional gas

more collisional

how do we get from

SIDM 3 cm²/g

L, BCG

to $\frac{\sigma}{m_{\chi}}$: the observations

Sausage Cluster $160 \pm 130 \text{ kpc}$ $220 \pm 240 \text{ kpc}$

<u>El Gordo</u> 100, 400 (± 140?) kpc

expected offsets are ≤ 20-50 kpc

expected offsets are ≤ 20-50 kpc

(smaller than obs. uncertainties + too small to explain observed offsets)

expected offsets are ≤ 20-50 kpc

(smaller than obs. uncertainties + too small to explain observed offsets)

however...

 $3 \text{ cm}^2/\text{g}$

10 cm²/g: 300 kpc 3 cm²/g: 200 kpc 1 cm²/g: 100 kpc

10 cm²/g: 300 kpc 3 cm²/g: 200 kpc 1 cm²/g: 100 kpc

scales with cross section!

expected offsets are ≤ 20-50 kpc

(smaller than obs. uncertainties + too small to explain observed offsets)

alternative methods may provide better SIDM constraints (BCG miscentering could give ≤ 0.1 cm²/g)

given velocity distribution + escape velocity, can compute likelihood of each outcome given velocity distribution + escape velocity, can compute likelihood of each outcome

particles from opposite halos

Maxwell-Boltzmann distribution $P_{halo1}(v) = P_{MB}(v, \sigma_v)$ $P_{halo2}(v) = P_{MB}(v - v_{col}, \sigma_v)$ with $\sigma_v = v_{esc}/4$ (for cored profiles)

self-interaction (isotropic scattering)

• v_{2} escape velocity $v_{esc} \sim \sqrt{\frac{GM}{R}} \sim M^{1/3}$

outcome probabilities

outcome probabilities, more generally

outcome probabilities, more generally

unequal mass mergers?

let $q = M_1/M_2$. inputs now scale as:

$$v_{\rm col} \sim \sqrt{M_1(1+q^{-1})}$$

$$\sigma_v = \sqrt{\sigma_{v,1}^2 + \sigma_{v,2}^2} = \sigma_{v,1} \sqrt{1 + q^{-2/3}}$$

for a 10:1 merger, v_{col} , σ_v are 75% smaller; P(esc) = 0.56! 36%, 66%, 93% of lower-mass cluster lost for 1, 3, 10 cm²/g

much more likely to be ejected and form tails!

SIDM mergers summary

expected offsets are ≤ 20-50 kpc too small to explain observed offsets

alternative methods may provide better SIDM constraints BCG miscentering could give ≤ 0.1 cm²/g

underlying processes scale with mass but tails more likely in unequal mass mergers