Signatures of dark-matter sub-structure in axion direct detection experiments Joshua Foster University of Michigan August 10, 2017 17xx.xxxx J.F., N. Rodd, B. Safdi イロト イ理ト イヨト イヨト

DARK MATTER SUBSTRUCTURE SCENARIOS

THE AXION SIGNAL

Measuring a signal proportional to local axion field:

$$\Phi_{\text{Squid}} \sim \sum_{i}^{N_a} \cos\left[m_a\left(1+\frac{v_i^2}{2}\right)+\phi_i\right].$$

- v_i drawn from speed distribution f(v)
- ► For the analysis, use the Power Spectral Density $S_{\Phi\Phi}(f)$ following exponential distribution with

$$\lambda(f) \equiv \langle S_{\Phi\Phi}(f) \rangle = A \frac{\pi f(v)}{m_a v} \bigg|_{v = \sqrt{2(2\pi f - m_a)/m_a}} + S_{\Phi0}.$$

• $A \propto g_{a\gamma\gamma}^2$.

・ロト・西ト・ヨト・ヨー もくの

Some Signal Examples

< □ > < @ > < E > < E > E のQ@

THE ANALYSIS FRAMEWORK

• Given a model \mathcal{M} and model parameters θ , compute the likelihood of observed $S_{\Phi\Phi}$

$$p(S_{\Phi\Phi}|\mathcal{M},\theta) = \prod_{k} \frac{1}{\lambda_k(\theta)} e^{-S_{\Phi\Phi}(k)/\lambda_k(\theta)}.$$

• Compute test statistic *TS* to compare the goodness of fit of models \mathcal{M}_{signal} and \mathcal{M}_{null}

$$TS(S_{\Phi\Phi}|\mathcal{M}_{\text{null}},\mathcal{M}_{\text{signal}},\theta) = 2\log\frac{p(S_{\Phi\Phi}|\mathcal{M}_{\text{signal}},\theta)}{p(S_{\Phi\Phi}|\mathcal{M}_{\text{null}})}.$$

THE ASIMOV ANALYSIS

• With Asimov analysis, given a model, can compute the expected *TS*.

$$TS_{\max}^{\text{Asimov}} = 2 \times \sum \left[-\lambda_k(\theta) \left(\frac{1}{\lambda_k(\theta)} - \frac{1}{\lambda_k^{\text{null}}} \right) - \log \left(\frac{\lambda_k(\theta)}{\lambda_k^{\text{null}}} \right) \right]$$

For general boosted halo

$$TS \sim -g^4 \frac{T\pi}{2m_a \text{PSD}_{\text{back}}^2} \int dv \frac{f(v)^2}{v}$$
$$\sim -g^4 \frac{T\pi}{2m_a \text{PSD}_{\text{back}}^2} \frac{\text{erf}\left(\frac{\sqrt{2}v_{\text{obs}}}{v_0}\right)}{\sqrt{2\pi}v_0 v_{\text{obs}}}$$

► Determines the expected significance → constraint/detection sensitivity

MONTE CARLO AND ASIMOV TS

AN MC EXAMPLE FOR AN SHM CONSTRAINT

PARAMETER ESTIMATION

- After a detection, extend the set of parameters we fit in with our log-likelihood scan.
- Can also estimate the error on parameter estimation by Asimov analysis
- ► Significantly improved sensitivity from resonant mode

ANNUAL MODULATION

• Earth's motion about the sun causes the speed distribution to evolve over time

$$f_{\rm SHM}(v,t) = \frac{v}{\sqrt{\pi}v_0 v_{\rm obs}(t)} e^{-(v+v_{\rm obs}(t))^2/v_0^2} (e^{4vv_{\rm obs}(t)/v_0^2} - 1).$$

► Collect *i* "days" of PSD data, compute *TS* from the joint likelihood

$$p(S_{\Phi\Phi}|\mathcal{M},\theta) = \prod_{i} \prod_{k} \frac{1}{\lambda_{k}(i,\theta)} e^{-S_{\Phi\Phi}^{i}(k)/\lambda_{k}(i,\theta)}.$$

Also consider gravitational focusing

BULK HALO ANNUAL MODULATION

 $\quad \bullet \quad \alpha = \sqrt{(\hat{v}_{\odot} \cdot e_1)^2 + (\hat{v}_{\odot} \cdot e_2)^2} \\ \quad \bullet \quad \bar{t} = \arctan\left(\frac{\hat{v}_{\odot} \cdot e_2}{\hat{v}_{\odot} \cdot e_1}\right)$

SUBSTRUCTURE ANNUAL MODULATION

► Need to look for modulation to detect coherent features in velocity distribution

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

STREAM ANNUAL MODULATION

CONCLUSION

- Now understand basic sensitivities of ABRACADABRA to axion DM scenarios.
- ► Tested, functioning analysis framework for axion detection.
- Ongoing work towards more complex analyses of ABRACADABRA data and its astrophysical relevance.