Gamma-ray and optical polarimetric monitoring of GeV bright blazars

Ryosuke Itoh

Tokyo Institute of technology

2017-08-08 @TeVPA, Ohio

What is the **major** parameter for blazars ?

Blazar variability

e.g., PMN J0948+0022 flare in 2012

Well correlated total flux & P.D. with constant P.A. is explained by simple one-zone 'shock-in-jet' model

one-zone models also produce correlated synchrotron + gamma-ray variability (e.g., Mastichiadis & Kirk 1997)

Variability of flux, color and polarization Correlation between optical flux, polarization and gamma-ray flux

Varies by sources (or flares)

Kanata 1.5m telescope

Fermi/LAT

http://space.skyrocket.de/img_sat/glast__1.jpg

100 MeV – 300 GeV All sky survey Pass 8 6.5 years data

Simultaneous Optical/NIR band obs. Imaging polarimetry

Since Fermi launched (2008-), we performed

- Daily polarimetric monitor of ~40 AGNs
- Follow-up observation of GeV flare targets

Target List

Red; GeV bright source

FSRQ	LSP		ISP	HSP	RL-NLSy1
3C 454.3 (498)	BL Lac (539)		S5 0716+714 (628)	Mrk 501 (244)	1H 0323+342
3C 273 (332)	OJ 287 (413)		3C 66A (487)	PG 1553+113 (225)	PMN J0948+0022
3C 279 (177)	AO 0235+164 (93)		1ES 1959+650 (202)	PKS 2155-304 (161)	
PKS 1749+096 (163)	OJ 49 (70)		S2 0109+22 (102)	Mrk 421 (74)	
3C 371 (124)	S4 0954+658 (5)		PKS 0048-097 (63)	ON 325 (56)	
RX J1542.8+612 (113)	1ES 1218+304 (3)		ON 231 (48)	1ES 0806+524 (54)	
PKS 1510-089 (110)			OQ 530 (19)	H 1722+119 (66)	
Mis V1436 (106)				PKS 0422+004 (42)	
CTA 102 (92)				1ES 2344+514 (33)	
PKS 1502+106 (76)		41 blazars, 6.5 year dat		1ES 0647+250 (24)	
QSO 0454-234 (28)		All photopolarimetric		1ES 0323+022 (21)	
S5 1803+784 (35)	data were public				
PKS 0754+100 (28)					
PKS 0215+015 (5)				📕 🔍 Vizier	⁻ Kanata blazar
GB6 J1239+0443 (5)					

Correlation betw. flux and P.D.

RI+16

Gamma-ray luminous blazars tend to show correlation between optical flux and P.D.

Variability of PD shows good correlation with gammaray Luminosity or ratio of gamma-ray flux and optical flux (not optical luminosity)

Discussion; Multi emission region

- We performed long-term optical polarimetric observation of ~40 blazars with Kanata and *Fermi/LAT*.
- we found Compton dominance might be good indicator of polarization properties
- It imply a systematic difference in the intrinsic alignment of magnetic fields in pc-scale relativistic jets between different types blazars
- A measurement of "Flare cadence" will be helpful to test the assumption of "multi-emission region" model.