Planck Collaboration: The Planck mission

General Constraints on Dark Matter Decay From CMB

Tracy Slatyer, Chih-Liang Wu Phys.Rev. D95 (2017) no.2, 023010 (arXiv:1610.06933)

Aug 11 2017 TeVPA

Energy injection in the dark ages

How?

• DM annihilates or decays into SM particles

- →between recombination and reionization (dark age)
- →new sources of energy injection into CMB
- →additional heating and ionization
- →increase optical depth, change CMB power spectrum...

Energy injection in the dark ages

Why?

- 1. Physics in the dark ages are well understood
- 2. CMB power spectrum measured precisely
- 3. Doe Not depend on local DM density and distribution nowadays

Energy injection in the dark ages

Why?

- 1. Physics in the dark ages are well understood
- 2. CMB power spectrum measured precisely
- 3. Doe Not depend on local DM density and distribution nowadays
- 4. Strong limit between MeV GeV energy for e^+e^- channel

Energy injection history

• How much energy actually deposit into the CMB by different channel?

Energy injection history

- How much energy actually deposit into the CMB by different channel?
- $p_a(z_f, E_i) = \frac{\text{deposited}}{\text{injected}}$, a: ionization, heating... (by simulation)
- Injection rate: $\propto < \sigma v > (1+z)^6$ for ann; $\propto \frac{e^{-t/\tau}}{\tau} (1+z)^3$ for decay
- Need time to deposit: delayed deposition

CMB change

- Boltzmann code (ex: CLASS): study specific energy injection profile
- Decaying DM Injecting 30 MeV e^+e^- :

• More information and model-independent way to constrain DM?

Principal component analysis

- Determine numbers of relevant parameters
- PCA:
 - Basis M_i for injection process ex: 10 keV-1TeV photon, find δC_ℓ
 - Construct Fisher matrix, marginalized over standard parameters
 - Eigenvectors $e_i = \sum_j (\alpha_i)_j M_j$ with eigenvalues λ_i
 - If $\lambda_1 >> \lambda_i$, $e_1 = \sum_j (\alpha_1)_j M_j$ dominate

$$-2\sigma \text{ constraint:} \frac{\langle \sigma v \rangle}{M_x}$$
 , $\frac{1}{\tau} < \frac{2}{(\alpha_1)_j \sqrt{\lambda_1}}$

- * In linear regime, where energy injection is small
- * Gaussian likelihood

PCA – Energy Basis M_i : 10Kev - 1Tev e^+e^- & 10Kev - 1Tev photon e⁺+e⁻ Annihilation photons Decay photons e⁺+e 1.00 🖓 1.00 WMAP PLANCK CVL WMAP PLANCK CVL 0.10 0.10 0.01 0.01 4 5 9 10 11 12 4 56 7 8 9 10 11 12 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12 8 4 5 6 7 Log₁₀[Energy (eV)] Log₁₀[Energy (eV)]

PCA – Energy Basis M_i : 10Kev - 1Tev e^+e^- & 10Kev - 1Tev photon Annihilation Decay e⁺+e⁻ photons e⁺+e 1.00 1.00 WMAP WMAP PLANCK PLANCK CVL CVL 0.10 0.10 0.01 0.01 4 5 8 9 10 11 12 6 7 5 6 7 8 9 12 4 10 11 12 4 5 6 7 8 9 10 11 12 9 4 5 6 8 7 Log₁₀[Energy (eV)] Log₁₀[Energy (eV)] 1. $e_1 = \sum_j (\alpha_1)_j M_j$ dominate

2. λ_1 contributes >99.9% of variance for ann, >97% for decay

3. Upper limit at different energies E_i scales as $\frac{2}{(\alpha_1)_i \sqrt{\lambda_1}}$

PCA – Redshift

Basis M_i: redshift (Delta-like energy injection at each redshift)

Annihilation

PCA – Redshift

Basis M_i: redshift (Delta-like energy injection at each redshift)

- The weighting function for annihilation peaks at z~600 while for decay broadly peaks at z~300
- The process can be captured by a single parameter

MCMC

- Go beyond linearity and Gaussian likelihood
- Use MCMC code (ex: **Montepython**):

six standard cosmological parameters + DM decay lifetime

Perform MCMC to check PCA result

Compare with observation

- Constraints from observations of diffuse X-ray or gamma-ray emission
- Depend on the DM local density and distribution in the present day
- Decay to photons (usually stronger) or electrons with FSR
- DM decay to e^+e^- :

Constraint on Decaying DM

- Short-lifetime DM could be a fraction of DM
- Constraint on mass fraction as a function of lifetime:

Summary

- PCA provides a method to quickly estimate the CMB limit for arbitrary energy injection spectra, consistent with MCMC
- For annihilating DM and DM decaying with a long lifetime, the effect on the CMB can be approximately described by a single parameter
- Constraints on decay to e^+e^- are strong between MeV GeV
- The limit would improve by a factor of ~ 5 with an experiment that is cosmic variance limited up to I = 2500
- An Example of Mathematica notebook is given at <u>http://nebel.rc.fas.harvard.edu/epsilon/</u>
- Future: explore more general energy injection models, with different redshift dependence

Bonus Slides

Energy injection history

- $f_a(z_i, z_f, E_i) = \frac{\text{deposited}}{\text{injected}}$, a= excitation, ionization, heating...
 - injection time (z_i) , deposit time (z_f) , injection species & energy (E_i)
- Energy deposited into CMB:
 - $p_a(z_f, E_i) \sim \sum_i f_a(z_i, z_f, E_i) \times injection rate(z_i)$
- Injection rate:
 - $\propto < \sigma v > (1 + z)^6$ for annihilation
 - $\propto \frac{e^{-t/\tau}}{\tau} (1+z)^3$ for decay

 $p_{\text{ionization}}(z_f, E_i)$

Tracy Slatyer et. al arXiv:0906.197

- Photon: ionization efficiency is high for low energy photon
- Electron: 30 MeV upscatter CMB by Compton scattering, produce low energy photon

$p_{\text{ionization}}(z_f, E_i)$ - Decay

- transparent at low redshift? need time to deposit (delayed deposition)
- High efficiency window:
 30 MeV for e⁺e⁻ and 10 keV for photon

$p_{ionization}(z_f, E_i)$ - Annihilation

 e^+e^-

photons

- transparent at low redshift? -> delayed deposition
- High efficiency window:
 - 30 MeV for electron and 10 keV for photon 0

Short-lifetime decaying DM

- Short-lifetime decaying DM could also be a fraction of DM
- PCA:

basis: fixed 30 MeV electrons but different lifetimes

1. λ_1 (first PC) dominate > 98%

2. Short-lifetime DM has little weight Injection rate $\propto \frac{e^{-t/\tau}}{\tau} (1+z)^3$

MCMC

• For example: decaying DM, 30MeV electron injection

General constraint

 DM decay to Standard Model particles: PPPC4DMID package:

28 decay channels in the galaxy, electron & photon energy spectra

Fisher Matrix

$$\begin{split} \Sigma_{\ell} &= \frac{2}{2\ell+1} \times \\ & \begin{pmatrix} \left(C_{\ell}^{TT}\right)^2 & \left(C_{\ell}^{TE}\right)^2 & C_{\ell}^{TT}C_{\ell}^{TE} \\ \left(C_{\ell}^{TE}\right)^2 & \left(C_{\ell}^{EE}\right)^2 & C_{\ell}^{EE}C_{\ell}^{TE} \\ C_{\ell}^{TT}C_{\ell}^{TE} & C_{\ell}^{EE}C_{\ell}^{TE} & \left[\left(C_{\ell}^{TE}\right)^2 + C_{\ell}^{TT}C_{\ell}^{EE} \right] \end{pmatrix} \\ & (F_{e})_{ij} &= \sum_{\ell} \left(\frac{\partial C_{\ell}}{\partial \alpha_{i}} \right)^T \cdot \Sigma_{\ell}^{-1} \cdot \frac{\partial C_{\ell}}{\partial \alpha_{j}}. \end{split}$$

6 cosmological parameter: baryon density, ωb, CDM density, ωc, the primordial scalar spectral index ns, the normalization As (k = 0.002/Mpc), the optical depth to reionization τ and the Hubble parameter H0

$$F = F_e - F_v F_c^{-1} F_v^T$$

Reionization

- Studied by Hongwan Liu et.al (arXiv: 1604.02457)
- Using different reionization models, including structure formation
- Less than 10% to the ionization fraction at reionization is from annihilating DM

