Autonomous detection of air showers with the TREND radio-array

Olivier Martineau-Huynh TeVPA2017, Columbus

Aug. 10, 2017

Autonomous radio-detection

- Cheap, light & robust: radio is an
 appealing technique for giant detectors
 of HE air showers.
- Background sources are a major challenge for ground-based radio experiments.
- TREND proposal (2008): tiny group from China (Wu XiangPing NAOC, Hu HongBo IHEP) & France (P. Lautridou Nantes, V. Niess Clermont-Ferrand, OM Paris/NAOC/IHEP) aiming at demonstrating that self-triggered radio trigger + identification of air shower is possible.
- Site: 21CMA radio interferometer, XinJiang Province, China

TREND setup

50 1D antenna (1 polarisation) – trigger rate up to ~ 200Hz/antenna – transfert of analogic signal to DAQ room – on-the-fly digitization – trigger if signal>6 or 8σ – record event if 4+ antenna triggers

Radio background

TREND-50 antennas radio array: 2011-2012 data (E-W polarization) 316 DAQ days analyzed

8 10⁹ triggers recorded ⇔ 8TBy
 7 10⁸ coincidences
 <u>~25Hz</u> event rate
 over whole array (physical origin)

 Expected EAS trigger rate:
 <u>~40/day</u>

Background rejection is a key issue for EAS radiodetection.

Background sources: HV lines, radio emiters, train, cars, planes, thunderstorms...

Discriminating parameters

Antenna 114 Run 738 Event 27

TREND EAS candidates

2011-2012 data - 316 DAQ days EW polar 574 EAS candidates

TREND real-time event simulation

TREND calibration

Results

- Simulated data set allows computing detector apperture:
 - $S_{eff}(E, \theta, \varphi) = S_{sim}(E, \theta, \varphi) * \frac{N_{det}(E, \theta, \varphi)}{N_{sim}(E, \theta, \varphi)}$ effective area [m²]
 - $App(E) = \iint_{d\Omega} S_{eff} \cos \theta \sin \theta d\theta d\phi$ apperture [m²sr]
- Event number during period Δt =80 days:
 - $N(\Delta t) = \int_{E} App(E) \frac{dN}{dE} dE * \Delta t \text{ with differential flux } \frac{dN}{dE} = K_0 E^{-\alpha} [\text{m}^{-2}\text{sr}^{-1}\text{s}^{-1}]$
 - N(80 days) = 177_{-44}^{+49} (205 experimental candidates in the corresponding subset)

TREND issues

- «You get what you pay for»: **system reliability** questionnable
 - Sudden drops in gain
 - Aging (antennas, amplifiers, optical system, computers...)

Next steps

- GRANDproto35: dedicated setup of 35 antennas deployed on the TREND site. Goal: optimized detection efficiency & air shower purity
 - Polarization measurement (3 arms antenna) brings additionnal tools for background rejection
 - Dedicated electronics & DAQ (developped at LPNHE) should allow ~100% live time.
 - → Expecting improved detection efficiency & background rejection compared to TREND.

Conclusion

- TREND accomplished its initial goal: performing succesfull detection & identification of air shower with an autonomous radio array. Paper in preparation.
- Limited detection efficiency & sample purity due to flows in TREND setup. Should be fixed on GRANDproto35 (starting early 2018), a first step towards GRAND [Zilles, Friday PM].

Cut efficiency

Cut	% survival	N _{coincs} final	% survival [simu]	N_{coins} [simu] (not E weighted)
« 50Hz » cut	8%	6.3 10 ⁷	82%	1526
Pulse duration	46%	2.9 10 ⁷	86%	1312
Multiplicity > 4	51%	1.4 10 ⁷	80%	1050
Valid reconstruction	67%	1.0 10 ⁷	99%	1040
Radius > 3000m	35%	3.4 10 ⁶	95%	988
Θ < 80°	30%	1.0 10 ⁶	98%	968
Trigger pattern/ Extension	32%	3.3 10 ⁵	88%	855
Neighbourgs (direction)	0.3%	1440	85%	725
Neighbourgs (time)	40%	574	92%	668

Simulated EAS selection cuts survival rate: 37% (46% if multiplicity cut excluded)

Radio background

- Here selecting plane wavefronts only (curvature radius>500m)
- Most events coming
 from specific directions
 (N,E,W) along horizon
 (static noise sources)

Direction distribution

- Shapes of zenith and azimuth distributions of experimental radio candidates and simulated EAS are compatible.
- Excess of experimental data at large zenith angles & towards North & West (standard background sources)
- ➔ Excess most likely corresponds to background events passing cuts.
- Still to be refined, but already TREND has performed autonomous detection & identification of EAS, sample purity ~ 70%.

