PARTICLE ACCELERATION AT PULSAR-WIND TERMINATION SHOCKS

Gwenael Giacinti (MPIK Heidelberg) & John G. Kirk (MPIK Heidelberg)

In Prep. (To be submitted soon)

Observations of the Crab nebula

RADIO X-RAYS

- → X-ray spectral index : $d(\ln N_{\gamma}) / d(\ln v) = -2.1$
- → Predicted particle spectrum at ultra-relativistic shocks : $d(\ln N_e) / d(\ln \gamma) = -2.2$

Seems to be in perfect agreement

BUT... Perpendicular shock, so 1st order Fermi inoperative !

Giacinti & Kirk Particle Acceleration at Pulsar-Wind Termination Shocks

Observations of the Crab nebula

(1) Spectral index map - Mori et al., ApJ (2004):

Hard spectrum close to the
shock, in the equatorial plane
Photon index s ~ 1.9
=> d(ln N_e) / d(ln γ) ~ -1.8 !

(2) How many X-ray emitting electrons ?

 $N(e^{-1} radio)/N(e^{-1} X rays) \sim 10^{4} - e.g. Olmi$ *et al.*, J. Plasma Phys. (2016).

OUR MODEL (PLANAR 1D) :

Simulations of Buehler & Giomi (2016) :

Giacinti & Kirk Particle Acceleration at Pulsar-Wind Termination Shocks

Giacinti & Kirk

Particle Acceleration at Pulsar-Wind Termination Shocks

Giacinti & Kirk

Particle Acceleration at Pulsar-Wind Termination Shocks

Numerical simulations – Model OUR MODEL (PLANAR 1D) : TS

→ **B** ∝ z **u**_y for
$$|z| < 10^{16}$$
 cm,
→ At z = ±10¹⁶ cm, B = ±1mG, δB/B = 0.1, cst. of z, Bohm.

Giacinti & Kirk

Particle Acceleration at Pulsar-Wind Termination Shocks

OUR MODEL (PLANAR 1D) :

- → Integrate trajectories of individual particles in 3D (test particle limit),
- → Use <u>3D realizations</u> of <u>turbulent B fields</u>,
- → Integrate in Downstream or Upstream rest frame (E=0) ; If shock crossing: Do the Lorentz transfo. $(X_d, t_d) \leftrightarrow (X_u, t_u)$,

→ Obs. Fr. ~ Shock Fr.
$$\leftrightarrow$$
 (X_s,t_s).

OUR MODEL (PLANAR 1D) :

Wave period 33 ms, low density wind \Rightarrow MHD invalid.

Amano & Kirk (2013):

Two fluid simulations of a shock front in a Poynting-flux-dominated relativistic flow.

Giacchè & Kirk (2017):

Propagate individual e^{\pm} .

$$\gamma_{inj} \sim 10^{4-6}$$
 => TeV electrons.

Numerical simulations

In the equatorial current sheet :

VERY SOFT

HARD

Positrons

(... or electrons - depends on polarity)

Electrons

Giacinti & Kirk

Particle Acceleration at Pulsar-Wind Termination Shocks

Giacinti & Kirk

Particle Acceleration at Pulsar-Wind Termination Shocks

Electrons

Electrons

Conclusions

 \rightarrow X-ray emitting particles in the Crab Nebula can be accelerated at the termination shock by 1st order Fermi,

 \rightarrow Grad B-drift does not help (particles advected after ~ 1 cycle),

→ On the contrary, **shock-drift** helps: **Multiple shock** crossings, hard electron (or positron) spectrum,

→ Spectral hardening (photon index ~ -1.9) results from the drift of e^- (or e^+) along the shock and into the current sheet,

---> Chandra observations

- \rightarrow Enough particles are accelerated to explain radio/X-ray obs.
- (\rightarrow Reconnection probably relevant only for radio electrons.)