The Cosmic Ray Flux Spectrum above 300 PeV of the Pierre Auger Observatory

Alan Coleman TeVPA Aug 09, 2017

The Pierre Auger Observatory

Largest cosmic ray detector in the world - 3000 km²

Running since 2004, completed 2008

Hybrid Detector

Surface Water Cherenkov Detectors Fluorescence Telescopes

Surface Detector efficient above 3 EeV

Low energy extension to both arrays Higher angled telescope Denser surface detector array

Fluorescence Detector (FD)

Four detector sites on edge of SD

Views shower development

Calorimetric measurement of electromagnetic air shower

3

Provides energy scale

Surface Detector (SD)

1600 (61) Water Cherenkov Detectors in hexagonal array with 1500 m (750 m) spacing

Measures density of secondary particles on the ground

Shower energy estimated from lateral distribution signal

Event Reconstruction Types

Energy Calibration

Uses events which are reconstructed by the FD *and* SD, independently

Provide a data set to calibrate the SD reconstructions

$$E_{SD} = A X^{B}, X = \{S_{35}, S_{38}, N_{19}\}$$

Recent Reconstruction Improvements

- Update to the modeling of the vertical aerosol optical depth (VAOD)
 - Single scattering from outside field of view
 - Multiple scattering of light

 Updated calculation of invisible energy

$$\circ \quad \mathsf{E}_{\mathsf{FD}}^{} = \mathsf{E}_{\mathsf{Cal}}^{} + \mathsf{E}_{\mathsf{Inv}}^{}$$

- Based on measured data instead of simulation
- Comparable to previous invisible energy measurements

7

M. Malacari, PoS(ICRC2017) 398

Recent Reconstruction Improvements

- Update to individual FD eyes
 - Recalculation of optical efficiency for each telescope separately
 - Improvement of the photomultiplier calibration

- Longitudinal profile fit
 - Removed bias in the longitudinal FD fit
 - Constraint on area-over-peak
 - Affects showers that are only observed near maximum
 - Affects showers < 1EeV

Impact On Observatory Energy Scale

Verzi, Valerio. Proceedings of the 33rd ICRC (2013).

Energy Spectrum

Only statistical errors shown

10

Combined Spectrum and Fit

Only statistical errors shown

11

Declination Dependence

Conclusion

- Many recent improvements to the FD reconstruction
 O Upward shift in the energy scale <=4% (within 14% systematic error)
- Four different methods to measure the cosmic ray flux for energies above 300 PeV
- The spectral features have been measured using the combined energy spectrum with over 70,000 [km² sr yr] of exposure
- Energy spectrum shows no declination dependence

SD Inclined Event Reconstruction

The muonic component that reaches the ground has universal shape

Energy estimator given by relative muon density $\rho_{\mu}(\vec{r}) = N_{19} \rho_{\mu,19}(\vec{r};\theta,\phi)$

 N_{19} values calibrated with FD events

SD Vertical Event Reconstruction

Vertical events fit to an empirical lateral distribution function

1st order energy estimator: S(1000) or S(450) given by signal at that dist.

Correct for geomagnetic and weather effects, a few percent

Apply zenith correction to account for different grammage traversed Converts S(1000) \rightarrow S₃₈, S(450) \rightarrow S₃₅

Systematic Uncertainties

Comparison with Telescope Array

D. Ivanov (ICRC2017)

New And Old Spectra

