

TeVPA 2017

New physics searches with the PeV scale neutrinos

Carlos Argüelles in collaboration with Teppei Katori and Jordi Salvado

Based on PRL 115, 161303 (2015) (arXiv:1506.02043)

What we have explored so far...

Cosmic neutrinos frontier

Plii

What do we know about astrophysical neutrinos?

- ~80 Events in 6 years.
- Events spatial distribution compatible with **isotropic** hypothesis.
- No statistically significant correlation with Galactic plane.
- Event distribution suggests extragalactic origin for the majority of the events.
- Flavor ratio is consistent with 1:1:1 ratio.

New physics searches

	At the Source	At Propagation	
Energy	Matter effects	New interactions, sterile neutrinos	
Direction	DM decay/annihilation	New interactions with Galaxy/Earth	
Flavor	Matter effects	Decay, sterile, new operators	

(C.A., M. Bustamante, J. Conrad, A. Kheirandish, and A. Vincent *in preparation*)

New physics searches

	At the Source	At Propagation	
Energy	Matter effects	New interactions, sterile neutrinos Next talk by Ali!	
Direction	DM decay/annihilation	New interactions with Galaxy/Earth	
Flavor	Matter effects	Decay, sterile, new operators	

(C.A., M. Bustamante, J. Conrad, A. Kheirandish, and A. Vincent *in preparation*)

Initial flavor

Flavor composition @ source

Calculating $\bar{P}_{\nu_{\alpha} \to \nu_{\beta}}(E)$

The oscillation probability depends on the neutrino propagation hamiltonian

$$H(E) = V(E)^{\dagger} \left(egin{array}{ccc} \Delta_{1}(E) & 0 & 0 \ 0 & \Delta_{2}(E) & 0 \ 0 & 0 & \Delta_{3}(E) \end{array}
ight) V(E)$$

Since the oscillation length is much smaller than the distance of the sources

$$\bar{P}_{\nu_{\alpha} \to \nu_{\beta}}(E) = \sum_{i} |V_{\alpha i}|^{2} |V_{\beta i}|^{2}$$

Oscillation probabilities depend only on the mixing elements!

Possible flavor triangles

Due to unitarity the possible Earth flavor ratios for a given initial flavor composition is confined. 10

Astrophysical neutrino flavor

C.A., T. Katori, J. Salvado (Phys. Rev. Lett. **115**, 161303) M. Bustamante, J. Beacom, W. Winter (Phys. Rev. Lett. **115**, 161302)

+ New physics $H = \frac{1}{2E} U M^2 U^{\dagger} + \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$ $\sim 10^{-24} \text{GeV}\left(\frac{TeV}{E}\right)$ $\left(egin{array}{ccc} 0 & a^T_{e\mu} & a^T_{e au} \ \left(a^T_{e\mu}
ight)^* & 0 & a^T_{\mu au} \ \left(a^T_{e au}
ight)^* & \left(a^T_{\mu au}
ight)^* & 0 \end{array}
ight) ,$ $O_0 < O(10^{-23}) \text{ GeV}$ $O_1/\Lambda_1 < O(10^{-27})$ $\Delta \chi^2$ 6 10⁻²² () 10⁻²³ () 10⁻²⁴ () 10⁻²⁵ 10⁻²⁶ Current best terrestrial limits on the new terms from IceCube+SK. **e**τ • 10⁻²⁷ 凝 eµ 🗖 🛚 μτ 🔺 Phys.Rev. D91 (5) (2015) 052003, 10-28 10⁻²⁷ 10⁻²⁶ 10⁻²⁵ 10⁻²⁴ 10⁻²³ 10⁻²²0 3 6 10⁻²⁸ Phys.Rev. D82 (2010) 112003. 9 $Re(a^{T})$ (GeV) Plii

+ New physics

$$H = \frac{1}{2E} U M^2 U^{\dagger} + \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$$

(setting operators scales to current SK bounds)

Since the new physics flavor structure is unknown we sample randomly:

$$d\, ilde{U}_n = d\, ilde{s}_{12}^2 \wedge d\, ilde{c}_{13}^4 \wedge d\, ilde{s}_{23}^2 \wedge d\, ilde{\delta}$$

New physics term dominates (given current bounds). But more confined in pion case

C.A., T. Katori, J. Salvado (Phys. Rev. Lett. **115**, 161303) M. Bustamante, J. Beacom, W. Winter (Phys. Rev. Lett. **115**, 161302)

+ New physics $H = \frac{1}{2E} UM^2 U^{\dagger} + \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$

(setting operators scales to current SK bounds)

lceCube -> lceCube-Gen2!

IceCube keeps collecting more data: triangle will improve!

Current limits is statistically limited! An IceCube extension can help further constrain new physics!

Shoemaker et al. Phys.Rev. D93 (2016) no.8, 085004

Take home message

- Current observations of the flavor triangle are already
- more restrictive than terrestrial measurements.
- Expect improvement on flavor measurements from IceCube-Gen2: better systematics and more statistics!

THANKS

*conclusion robust under NSI and steriles (see bonus slides)

BONUS SLIDES!

+ NSI@Earth

In the pion scenario NSI effects are small. This is not the case for other initial flavor ratios.

+ (eV) sterile neutrino

- Sterile neutrinos effect is small on propagation.
- Large change only if the sources are shooting sterile neutrinos

Brdar et al. JCAP 1701 (2017) no.01, 026

+Neutrino decay

M. Bustamante, J. Beacom, K. Murase (1610.02096)

arXiv:1410.4267

LV	Parameter	Limit at 95% C.L	. Best Fit	No LV $\Delta \chi^2$	Previous Limi	t
eμ	$\operatorname{Re}\left(a^{T}\right)$	$1.8\times 10^{-23}~{\rm GeV}$	$1.0\times 10^{-23}~{\rm GeV}$	1.4	$4.2\times 10^{-20}~{\rm GeV}$	[58]
	$\operatorname{Im}\left(a^{T}\right)$	$1.8\times 10^{-23}~{\rm GeV}$	$4.6\times 10^{-24}~{\rm GeV}$			[00]
	$\operatorname{Re}\left(c^{TT}\right)$	8.0×10^{-27}	1.0×10^{-28}	0.0	9.6×10^{-20}	[58]
	$\operatorname{Im}\left(c^{TT} ight)$	8.0×10^{-27}	1.0×10^{-28}			
ет	$\operatorname{Re}\left(a^{T} ight)$	$4.1\times 10^{-23}~{\rm GeV}$	$2.2\times 10^{-24}~{\rm GeV}$	0.0	$7.8\times 10^{-20}~{\rm GeV}$	[59]
	$\operatorname{Im}\left(a^{T} ight)$	$2.8\times 10^{-23}~{\rm GeV}$	$1.0\times 10^{-28}~{\rm GeV}$			
	$\operatorname{Re}\left(c^{TT} ight)$	9.3×10^{-25}	1.0×10^{-28}	0.3	$1.3 imes 10^{-17}$	[59]
	$\operatorname{Im}\left(c^{TT} ight)$	1.0×10^{-24}	3.5×10^{-25}			
μτ	$\operatorname{Re}\left(a^{T} ight)$	$6.5\times 10^{-24}~{\rm GeV}$	$3.2 \times 10^{-24} \text{ GeV}$	0.9	_	
	$\operatorname{Im}\left(a^{T} ight)$	$5.1\times 10^{-24}~{\rm GeV}$	$1.0\times 10^{-28}~{\rm GeV}$			
	$\operatorname{Re}\left(c^{TT} ight)$	4.4×10^{-27}	1.0×10^{-28}	0.1	_	
	$\operatorname{Im}\left(c^{TT} ight)$	4.2×10^{-27}	7.5×10^{-28}			

Current bounds from SK

21

(arXiv:1007:0006)

