

The ARIANNA Detector

Chris Persichilli University of California, Irvine TEVPA 2017 Columbus, Ohio

Science Goals of the ARIANNA Array

Science Goals of the ARIANNA Array

only GZK flux predictions

The ARIANNA Concept

- Signal reflection at ice/water interface allows for surface installation and better sky coverage
- Low power requirements (4-10W) allow for self-contained power system, autonomous operation
- Radio-quiet environment means low trigger rate, allowing real-time wireless data transfer
- Off-the-shelf LPDA antennas are cheap (~\$100), well understood and provide directionality
- Proximity to McMurdo Station provides excellent logistical support, and reduces construction costs

from S. Brown / The Register

Neutrino Sky Coverage (Galactic Coordinates)

C. Reed, arXiv:1410.7352v2

Current State of ARIANNA: The HRA

Useful Livetime for analysis, adjusted for DAq deadtime, and data transmission

- System survives the Antarctic winter and function correctly in the spring
- 90% livetime is typical during normal operation
- Dips in livetime due to bulk data transfers and storm periods
- Average Livetime of <u>149 days per HRA</u> <u>Station</u> in 2016-2017 seaso

Radio Environment at the ARIANNA Site

- Shielding by Minna Bluff creates <u>extremely quiet</u> environment
- Base spectrum limited by galactic noise
- Narrow bandwidth noise is transient, low power, and identifiable

Radio Triggered Cosmic Rays

log(Maximum Amplitude [mV])

PoS(ICRC2017)399 & arXiv:1612.04473

CR Capabilities of a full ARIANNA Array

PoS(ICRC2017)399 & arXiv:1612.04473

$v_{_{\!\!\!\!\!\!T}}$ detection In Radio

- Sucesfully identified and tracked pulses from HiCal
- Same ARIANNA electronics, with different antennas and layout
- 68 CR air-shower candidates in preliminary search

HRA Neutrino Search Efficiency

C. Persichilli PoS(ICRC2017)977

HRA Neutrino Search Efficiency

C. Persichilli PoS(ICRC2017)977

*Some stations have different model amplifiers, and are not shown for simplicity. See backup slides for details

HRA Neutrino Search Efficiency

- Upward facing antennas will be necessary to tag cosmic rays (already planned)
- 90% signal efficiency is achievable with a simple analysis, and a plausible projection for a full ARIANNA deployment

C. Persichilli PoS(ICRC2017)977

*Some stations have different model amplifiers, and are not shown for simplicity. See backup slides for details

Future Work

- Deploy stations with new 8ch DAq board (2017-2018)
- Test ARIANNA station at South Pole (2017-2018)
- Continue to test wind power to extend operation into the Winter
- Continue to study ice properties to better understanding of our sensitivity

Conclusions

- The detectors of the HRA are now running robustly, with a typical livetime of 90%
- Moore's Bay' is a world-class location for radio based neutrino searches
- Our cosmic ray tag from upward antennas is necessary to distinguish neutrino signal, and has the potential to measure CR fluxes up to 10²0 eV with an independent technique
- A full deployment of ARIANNA should be able to probe all but the most conservative iron-only GZK spectra, even without any further livetime or sensitivity improvements

Backup Slides

The Outlying Event from Slide 12

Figure 5: Waveform and FFT of the outlying event in Figure 4. This event has a correlation value of $\chi = 0.71$, and was recorded at ARIANNA Site A at 10:25:03 UTC on March 27th, 2017. The inset shows the positions and polarizations of the LPDA's for each DAq channel.

C. Persichilli PoS(ICRC2017)977

Cosmic Ray Templates

150 ns

200 ns

Neutrino Template Matching

18

Astroparticle Physics, Volume 62, March 2015, Pages 139–151

Effect of Amp Response on Signal Region

Event Rates

Event Rates: Continued

Current State of ARIANNA: The HRA

The Ice at Moore's Bay

Bounce studies at ARIANNA site show direction resolution of ~1deg

Current State of ARIANNA: The HRA

Multi Station Coincidence

- Triggers in 2 other stations within 1s
- Previously identified as a cosmic ray candidate from high correlation to CR template
- Shows the need for upward facing antennas

ARIANNA Capabilities

C. Reed, Astroparticle Physics **70** (2015) 12-26 arXiv:1410.7352v2