High-energy neutrinos from Type IIn supernovae

Maria Petropoulou Purdue University

Columbus, Ohio , 08/10/2017

In collaboration with:

Stefan Coenders (TUM), Georgios Vasilopoulos (MPE), Atish Kamble (CfA-ITC), Lorenzo Sironi (Columbia University)

Type IIn SNe

• Narrow Ha lines, high bolometric and Ha luminosity → Indication of circumstellar interaction (Chevalier 1982; Chevalier 1998; Weiler 2001; Chevalier & Fransson 2003 +++)

Smith 2016

Type IIn SNe

• High mass-loss rates (1e-4 –1e-1 M_*/yr) \rightarrow high luminosity of emission due to interaction (Salamanca et al. 1998, Chugai et al. 2004, Chandra et al. 2015, Moirya et al 2014 + + +)

• Diverse properties \rightarrow *no typical SN*

2

Margutti et al 2017

Type IIn SNe

- Detection of radio emission \rightarrow Indication of electron acceleration at shocks
- FFA absorbed radio emission \rightarrow Indication of very dense CSM

(Murase et al. 2011, Margutti et al. 2014; Murase et al 2014; Petropoulou et al. 2016, Petropoulou et al. 2017)

5

(Petropoulou et al. 2017)

Model parameters

Single source

Shock + wind velocity

- Ejecta + CSM mass
- Fraction of magnetic energy density ($\epsilon_{\rm B}$)
 - Fraction of proton energy density (ϵ_{n})

Fraction of Type IIn SNe

Redshift evolution of CC rate

6

Source population

Properties of simulated sources

Diffuse neutrino emission

8

- 10,000 simulated sources
 - 100,000 redshifts
- 100 sets of 100,000 redshifts

CC rate (Hopkins & Beacom 2006) 4% of CC are SNe IIn

• Constraint on (fixed) proton energy fraction: $\epsilon_{p} < 0.2$

 ~10% to IceCube flux, if ε_p differs among sources

Point-source neutrino emission

Expected IceCube neutrino rate

Constraints on ε_{p}

of events for IceCube discovery

of events for IceCube sensitivity

Cumulative # of IIn

of muon v #

Distance (Mpc)

Summary

SNe IIn may account for ~10% of IceCube flux above 100 TeV, if the wide spread in their properties is taken into account.

Diffuse neutrino measurements can constrain $\varepsilon_p < 0.2$, if 4 % of CC SNe were of type IIn and ε_p is same in all sources.

Identification of a SN IIn as a neutrino point-source is possible with IceCube (up-going sample) 1 yr after breakout, if D<18 Mpc for ε_p <0.2 or D<7 Mpc for ε_p <0.03.

Thank you!

Backup Slides

Calculation of muon neutrino number

Point-source searches with IceCube

<u>Up-going events</u>

- Larger statistical sample
- Larger effective volume
- Atm. background not removed
- Poorer energy determination

<u>High-energy starting events (HESE)</u>

- Smaller statistical sample
- Smaller effective volume

down-going

up-going

- Atm. Background removed
- Accurate energy determination

Neutrino Events in IceCube

 $v_{\mu} \leq 1 \text{PeV}$

SN IIn -neutrino coincidence?

Name	$T_{\max}~(\mathrm{MJD})^{+}$	Host Galaxy	R.A. (J2000)	Dec. (J2000)	Z	$D_{\rm L}~({\rm Mpc})$
SN2008S	54508.5	NGC 6946	20:34:45.4	+60:05:57.8	0.0002	0.7
SN2008X	54502.5	NGC 4141	12:09:48.33	+58:51:01.6	0.006	28.0
SN2009ip‡	56206.5	NGC 7259	22:23:08.3	-28:56:52.4	0.006	26.4
SN2009kr	55148.5	NGC 1832	05:12:03.3	-15:41:52.2	0.007	16.0
SN2011A	55562.5	NGC 4902	13:01:01.2	-14:31:34.8	0.009	39.7
SN2011fh	55797.5	NGC 4806	12:56:14.0	-29:29:54.8	0.008	36.0
SN2011ht	55879.5	UGC 5460	10:08:10.58	+51:50:57.1	0.004	16.0
SN2013gc	56603.5	ESO 430-G20	08:07:11.9	-28:03:26.3	0.003	15.1
PSN J14041297-0938168	56645.5	IC 4363	14:04:13.0	-09:38:16.8	0.003	12.5
CSS140111:060437-123740	56734.5	MCG-02-16-02	06:04:36.71	-12:37:40.6	0.007	32.9
SN2014G	56674.5	NGC 3448	10:54:34.13	+54:17:56.9	0.005	20.0
SN2015bh	57163.5	NGC 2770	09:09:34.96	+33:07:20.4	0.006	28.5
SN2015J	57201.5	A073505-6907	07:35:05.2	-69:07:53.1	0.005	24.0
PSN J13522411+3941286	57071.5	NGC5337	13:52:24.1	+39:41:28.6	0.007	32.1
ASASSN-15lf	57194.5	NGC 4108	12:06:45.56	+67:09:24.00	0.008	37.3
SNhunt248	56828.5	NGC 5806	14:59:59.5	+01:54:26.2	0.005	20.1

ID 16 from 4yr HESE sample:

- Cascade-like event
- 1.13 days after T_max
- Angular offset ~7 degrees

Detection of ID16 deviates from background expectation at $\sim 2.8\sigma$

SN IIn -neutrino coincidence?

$$\frac{K_w \times \epsilon_p \big|_{2011 \text{fh}}}{K_w \times \epsilon_p \big|_{S1}} = 200 \left(\frac{v_{\text{sh}}^{S1}}{v_{\text{sh}}^{2011 \text{fh}}}\right)^3 \left(\frac{D_L^{2011 \text{fh}}}{D_L^{S1}}\right)^2 \frac{N_{2011 \text{fh}}}{N_{S1}} \approx 579 \dots 2.3 \times 10^4.$$

Assuming that in SN2011fh $\epsilon_p = 0.2$ (i.e., the largest allowed value from the diffuse neutrino flux measurements), its mass-loading parameter has to be at least $K_w^{2011\text{fh}} \sim 87 K_w^{S1} \sim 4 \times 10^{18} \text{ g cm}^{-1}$. Radio observations of SN2011fh could place strong constraints on $K_w^{2011\text{fh}}$ and, ultimately, exclude (or not) a physical connection to neutrino ID 16.

Radio spectra & light curves

Parameters: $v_{sh} = 9000 \text{ km/s}$, $A_w = 10^{16} \text{ gr/s} (0.05 M_{sun} / \text{yr})$, $Mej = 10M_{sun}$, $\varepsilon B = 0.01$, $\varepsilon p = 0.1$, $K_{ep} = 0.001$, $T_e = 10^5 K$ (Petropoulou et al. 2016, MNRAS 460)

Radio light curves

Role of CSM density

Denser $CSM \rightarrow Higher Peak luminosity \rightarrow Later peak time \rightarrow Larger % of peak luminosity dominated by secondary synchrotron$

(Petropoulou et al. 2016, MNRAS 460)