

The Compton Spectrometer and Imager

A balloon-borne gamma-ray spectrometer, polarimeter, and imager

John Tomsick

UC Berkeley/Space Sciences Lab

for the COSI collaboration

The COSI Collaboration:

S.E. Boggs (PI) (UCB/SSL and UCSD) J.-L. Chiu, C. Kierans, A. Lowell, C. Sleator, J.A. Tomsick, A. Zoglauer (UCB/SSL) C. Tindall, M. Amman (LBNL and former LBNL) P. Jean, P. von Ballmoos (IRAP, France) H.-K. Chang, C.-Y. Yang, C.-H. Tseng, C.-Y. Chu, Y.-C. Chang (NTHU, Taiwan), C.-H. Lin (AS, Taiwan), Y.-H. Chang , Y. Chou (NCU, Taiwan)

COSI US is supported through grants by NASA

Calibration image of a 662 keV 137 Cs source ~56 cm above the instrument.

Talk Overview

- COSI introduction
 - Including instrument and science goals
- 2016 balloon flight
- Results from 2016 flight
 - Including GRB 160530A, the Crab Nebula, and
 511 keV emission
- Conclusions

Operating Principle

of COSI-style Compton telescopes

- Photons interact multiple times in detectors.
- The interaction sequence can be determined from information such as scatter angles, absorption probabilities, scatter probabilities.

- The origin of a gamma-ray can be restricted to the "event circle."
- The photon originated at the point of all overlap.

Instrument & Campaigns

Instrument:

- Energy range: 200 keV several MeV
- 12 high-purity Ge double-sided strip detectors
- Energy resolution: ~2.5 keV FWHM
- Large field-of-view: almost 1/4 of sky
- Angular resolution: ~4° FWHM

Balloon campaigns:

- Nuclear Compton Telescope (NCT): 2 GeD prototype from Ft. Sumner, NM in 2005
- NCT: 10 GeD instrument from Ft. Sumner in 2009
- NCT: Failed launch from Australia in 2010
- COSI: Antarctica in 2014 (superpressure)
- COSI: New Zealand in 2016 (superpressure)

Detectors are 8x8 cm²

From 2009 flight (Bandstra et al. 2011)

COSI Science Goals

- Mapping 511 keV positron annihilation emission at the Galactic Center
- Studies of Galactic radioactivity: lines from supernova nucleosynthesis (²⁶Al, ⁶⁰Fe, ⁴⁴Ti)
- Polarimetry of Gamma-ray Bursts (GRBs), pulsars, X-ray binaries, and AGN

INTEGRAL/SPI Galactic center map of the positron annihilation radiation (0.511 MeV) (*Bouchet et al. 2010*)

Characteristic	Performance
Energy Range	0.2-5 MeV
Spectral Resolution	0.2-1%
Field of View (FoV)	25% sky
Sky Coverage	50% sky
Angular Resolution	FWHM
0.511 MeV	5.1°
1.809 MeV	3.4°
Narrow Line Sensitivity	$[\gamma \text{ cm}^{-2} \text{ s}^{-1}]$
(200 days, 30)	
0.511 MeV (e ⁺ e ⁻)	3.8×10 ⁻⁵
1.157 MeV (⁴⁴ Ti)	8.9×10 ⁻⁶
1.173/1.333 MeV (⁶⁰ Fe)	6.0×10^{-6}
1.809 MeV (²⁶ Al)	8.5×10 ⁻⁶
BH 100% Polarization	
(200 days,	23 mCrab
3σ , threshold sensitivity)	
GRB 100% Polarization	1.2×10 ⁻⁵
$(3\sigma, \text{ threshold sensitivity})$	erg cm ⁻²

COMPTEL map of ²⁶Al emission (1.809 MeV) (Oberlack et al. 1997)

COSI Launch from New Zealand: May 16, 2016

Flight Path

Landed in Peru on July 2 (46 day flight)

- Successful recovery
- Everything back in Berkeley now undergoing postflight tests

Daily Exposure

Shield and GeD Rates – full flight

- Great flight, but somewhat high background from radiation belts at the beginning
- ...and some day/night altitude changes during the 2nd half

GRB 160530A

- Found in real time
 - reported in GCN#19473
- Also detected by Konus-Wind, INTEGRAL, and AstroSat
 - Clock, position, and energy spectrum
- Image and light curve from Lowell et al. (submitted to ApJ)

GRB 160530A Polarization Analysis

- 390 Compton events collected
- Used standard and maximum likelihood analysis methods
- Did not detect significant polarization, but obtained an upper limit of <53% (90% confidence)
- Constraining, but all models predict a distribution of polarization amplitudes

Azimuthal Scattering Angle Distribution (ASAD) for the Compton events (Lowell et al., submitted to ApJ)

GRB 160530A Spectral Analysis

- Produced XSPEC-compatible spectra (response files, backgrounds...)
- Fit COSI spectrum with a Band function
- Konus-Wind: Svinkin+16 (GCN#19477)
- COSI: Sleator et al. (in prep.)

Parameter	COSI (99% conf.)	Konus-Wind
N _H (g cm ⁻²)	9.2 (calculated value)	-
α	-1.21 ^{+0.35} _{-0.42}	-0.93 ± 0.03
β	-3.5 (fixed)	<-3.5
E _c (keV)	638 (fixed)	638 ⁺³⁶ ₋₃₃
0.02-10 MeV Fluence (erg cm ⁻²)	(1.04 ^{+0.24} _{-0.16}) x 10 ⁻⁴	(1.30 ± 0.04) × 10 ⁻⁴
χ²/dof	17/22	73/73

Crab Image and Spectral Analysis

- Detections of Crab nebula, Cyg X-1, and Cen A
- Crab spectrum:
 - 950 counts in 93 ks
- Sleator et al. (in prep.)

Parameter	Fit Value
N _H (g cm ⁻²)	9.55 (calculated)
Power-law index	2.04 +0.36 -0.32
0.2-3 MeV flux (erg cm ⁻² s ⁻¹)	(4.8 ± 0.7) x 10 ⁻⁸
χ²/dof	6/11

(flux is about a factor of 2 higher than standard values)

trum with a base of the second second

Positron annihilation emission

and spectrum with a Compton telescope

• First 511 keV image

- Clear detection, but working on improving event selections
- Also working on exposure correction for the image

Conclusions

- Summary:
 - Nice flight with COSI functioning well
 - Results demonstrate feasibility of using a compact Compton telescope to study GRBs, compact objects, and diffuse 511 keV emission
- Future:
 - The same COSI instrument could be launched again
 - Upgrade in progress: ASIC (being developed at NRL)
 - Desirable upgrade: finer strip pitch (to improve angular resolution)

Backup Slides

Compton Telescopes: From COMPTEL to COSI

30+ years development

CGRO/COMPTEL:

- ~40 cm³ resolution
- **ΔE/E** ~10%
- Up to 0.4% efficiency

COSI:

- 1 mm³ resolution
- ΔE/E ~0.2-1%
- Up to 16% efficiency
- Background rejection
- Polarization, bandpass
- Improved performance with a fraction of the mass and volume

Nuclear Line Science

More COSI Upgrades from NCT

Mechanical cooler

-Sunpower CryoTel 10 W lift for 160 W input -Enables long flights

New CsI shielding

-More space available for detectors

Polarization Calibration

