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Why Look in the MeV Range?

EGRET All-Sky Map Above 100 MeV

~200 Sources Detected
Credit: EGRET Team
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Guaranteed Discovery Space
The MeV range is prime discovery space.

It is a key piece to the high-energy view of 
the Universe.

Note: Fermi-LAT optimized for 1 GeV

Achievable: Orders of magnitude improvement

More than ⅓ of Fermi-LAT catalog sources 
peak below the Fermi-LAT band.

Below 200 MeV AMEGO will dramatically 
improve sensitivity and will open a new 
window in the spectrum leading to the 

discovery of new sources and new source 
classes.
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AMEGO 3σ Sensitivity



AMEGO will provide a well rounded portfolio of capabilities
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MeV blazars have their peak power output in 
the MeV Band and are powerful probes of 
the growth of supermassive black holes.

● Large jet power and accretion luminosity
● Often found at very large redshift
● Harbor massive black holes (109 M⨀)

AMEGO will measure AGN spectral energy 
distributions and variability:

● Determine the maximum particle 
energies, study magnetic field 
strength, jet content, & the Ɣ-ray 
emission location.

● Differentiate hadronic and leptonic 
models with polarization.

Jets: Formation, Evolution, and Acceleration

See T. Venters’ talk at 17:00 today (8/10) 8



Extreme Conditions Around Compact Objects
Example 1: Soft Gamma-ray Pulsars

● Seen in hard X-ray but not Fermi-LAT, peak 
lies in MeV band

● 11 MeV pulsars known
○ Extremely energetic Edot > 1036 erg

● Possible “hidden” population of energetic 
soft gamma emitting pulsars

Example 2: Novae
● How do close binary star systems like 

classical novae eject mass during 
outbursts?

● Shocks in the expanding nova envelope 
produce gamma rays. 

AMEGO will measure the energy spectrum 
below 100 MeV to determine the shock 
properties and identify novae missed by 
optical observations. 9



Element Formation in Dynamic Systems

Nuclear lines explore Galactic chemical 
evolution and sites of explosive element 
synthesis (SNe)

● Electron-positron annihilation radiation
○ e+ + e- -> 2g (0.511 MeV)

● Nucleosynthesis
○ Giants, CCSNe (26Al)
○ Supernovae (56Ni, 57Ni,44Ti)
○ ISM (26Al, 60Fe)

● Cosmic-ray induced lines
○ Sun
○ ISM

See X. Wang’s talk at 14:30 on Friday (8/11)
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56Ni: 158 keV 812 keV (6 d)
56Co: 847 keV, 1238 keV (77 d)
57Co: 122 keV (270 d)
44Ti: 1.157 MeV (78 yr)
26Al: 1.809 MeV (0.7 Myr)
60Fe: 1.173, 1.332 MeV (2.6 Myr)



Searching for Dark Matter Signals

Example: Axions

Axions in neutron stars (hep-ph/0505090)

● emission process for axions with mass up 
to a few MeV

● production in Gamma Ray Bursts 

Axions produced in supernovae 
(arXiv:1410.3747)

● core collapse supernova (SN1987A)

Current upper limits would be limited by 
the PSF below 100 MeV

See M. Meyer’s talk at 17:00 on Friday (8/11)
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Challenges

From ~0.1 - 100 MeV two photon interaction processes 
compete: Compton scattering and pair production cross 

sections intersect at ~10 MeV
12

Additionally, large backgrounds 
exist in this energy range.



Ɣ converts to pair (e-/e+) in a multi-layer Si-strip 
tracker (no additional conversion material).

● Trigger on signals in 2 consecutive Si-strip 
layers in coincidence with energy deposit 
in a calorimeter.

● Ɣ direction is determined by measuring the 
position of the pair components as they 
pass through the Si-strip layers and a 
calorimeter.

● Ɣ energy is determined by evaluating the 
energy deposited in the Si-strips and in the 
calorimeter.Photon scatters a low-energy e- in Si-strip.  

Scattered Ɣ can be absorbed in the calorimeter. 

● Trigger on signal in Si-strip in coincidence 
with energy deposit in the calorimeter.

● Ɣ direction constrained to a circle or arc on 
the sky.  Determined by position and energy 
measurements of a low-energy e- and 
absorbed Ɣ.

● Ɣ energy is determined by evaluating the 
energy deposited in the Si-strips and in the 
calorimeter.
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AMEGO Schematic
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AMEGO Details
● Use of well-tested, proven 

technologies (Si tracker, CsI 
calorimeter, Plastic ACD, …)

● Designed to fit within a probe class 
budget:
○ Concept for the 2020 decadal 

review
● Designed to be modular for ease of 

development, testing, and integration.
● 10 year mission goal (similar to Fermi)
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The MeV gamma-ray band has enormous scientific potential.

AMEGO is a probe class survey mission in consideration for the 2020 
decadal review with sensitivity between 0.2 MeV and 10 GeV.

Detects MeV gamma-rays via pair production and Compton scattering and 
performs continuum, spectroscopy and polarization measurements. 

AMEGO will open up a new window on the MeV sky and explore:

● Jets: Formation, Evolution, and Acceleration
● Extreme Conditions Around Compact Objects
● Element Formation in Dynamic Systems
● Dark Matter Signals

See talks by T. Venters, M. Meyer, and X. Wang for more details. 16



Backup Slides
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Angular Resolution vs. Theta
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Angular Resolution vs. Energy
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Diffuse Backgrounds
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Effective Area vs. Theta
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Effective Area vs. Energy
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Sensitivity
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Polarization

In one week, assuming that the source is in the field of view for 10% of the time, 
AMEGO reaches an MDP of 5% (12%) in the 0.5 - 1 MeV (1 - 2 MeV) energy range.

Preliminary (see R. Caputo et al. ICRC 
2017 for more details).


