

Constraints on secret interactions among sterile neutrinos from Planck 2015 data Based on JCAP_046P_0417

Francesco Forastieri

Department of Physics and Earth Science, University of Ferrara and INFN Ferrara

TeVPA, Columbus (Ohio) 8/8/2017

Work in collaboration with M.Lattanzi, P.Natoli, N.Saviano, A.Mirizzi, G.Mangano

イロト イポト イヨト イヨト

Summary

- Standard neutrino cosmology
- SBL anomalies
- Sterile neutrinos
- Non-standard interactions
- Sterile neutrinos with non-standard interactions
- Results
- Conclusions

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017 Constraints on secret interact

イロト イポト イヨト イヨト

3

Standard neutrino cosmology

 $\scriptstyle{*}$ The theoretical value for $N_{\rm eff}$ in the ACDM model for three active neutrino families is:

 $N_{\rm eff} = 3.046$

 $N_{\rm eff} = 2.5$ 1.8 $N_{\rm eff} = 2.75$ $N_{\rm eff} = 3.046$ 1.6 $N_{\rm eff} = 3.25$ $^{n^{3}}(\ell+1) C_{\ell}/2\pi \ [10^{9} \mu \text{K}^{2}]$ $N_{\rm eff} = 3.5$ 1.2 1.0 0.8 0.6 0.4∟ 500 1000 1500 2000 2500 l [credits: M.Lattanzi]

 $N_{\text{eff}} = 3.13 \pm 0.32 (PlanckTT + lowP)$ $N_{\text{eff}} = 2.99 \pm 0.20 (PlanckTT, TE, EE + lowP)$

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017

Short Baseline (SBL) anomalies

Short baseline laboratory experiments (SBL) show anomalies that can be fitted by light sterile neutrinos. (Gallium, MiniBooNE, Reactor, LSND) light $\rightarrow m_{\nu s} \sim O(eV)$

[Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (2016) 033001]

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017

< ∃ >

Sterile neutrinos

The immediate interpretation is a light sterile neutrino, however the introduction of an extra component impacts on N_{eff} depending on the model assumed:

- a) Thermal distribution of sterile ν s
- b) Dodelson-Widrow (depending on a scale factor χ_s)

Cosmologically speaking we parametrize phenomenologically in this way:

$$\rho_{\nu} + \rho_{x} = \frac{7}{8} \frac{\pi^{2}}{15} T_{\nu}^{4} \left(N_{eff}^{SM} + \Delta N_{eff} \right)$$

$$\tag{1}$$

Extra degrees of freedom

mass of the sterile

$$\Delta N_{eff} = \begin{cases} \left(\frac{T_s}{T_\nu}\right)^4 [a] \\ \chi_s [b] \end{cases} \qquad m_s = \begin{cases} m_s^{eff} \left(\frac{T_s}{T_\nu}\right)^3 = m_s^{eff} \Delta_{Neff}^{\frac{3}{4}} [a] \\ \frac{m_s^{eff}}{\chi_s} = \frac{m_s^{eff}}{\Delta_{Neff}} [b] \end{cases}$$

Compatible with the prediction of the SM, this excludes a possible extra thermalized neutrino (sterile or active) at 3 and 5σ

イロト 不得下 イヨト イヨト

[b]

Sterile neutrinos having non-standard interactions

[Hannestad et al., 2013]

Introducing a new secret interaction between sterile neutrinos mediated by a massive boson having $M_X < M_{W^{\pm}}$ can suppress the thermalization.

$$\mathcal{L}_{\mathrm{int}} = g_X \bar{\nu}_s \gamma_\mu \left(1 - \gamma^5\right) \nu_s X^\mu$$

It behaves like the standard Weak interaction:

$$\sigma_x = G_X^2 T_\nu^2, \qquad \Gamma_X = G_X^2 T_\nu^5$$

compared with the Hubble expansion rate:

$$\frac{\Gamma_X}{H} \propto T^{\frac{7}{2}} \,[\text{MD}] \tag{2}$$

If $G_X > G_F$, neutrino-neutrino collisions stay in equilibrium longer than weak interactions.

イロト イポト イヨト イヨト

Color legend corresponds to ΔN_{eff} . Solid, dashed, and dot-dashed lines are $M_X = 300 \text{ MeV}$, 200 MeV and 100 MeV respectively.

[A.Mirizzi et al. 2016]

Large coupling constant ($G_X \sim 10^4 - 10^5 G_F$) \rightarrow copious production of sterile neutrinos by the scattering \rightarrow quick flavor equilibration.

 $\nu_s \simeq \sin \theta_s \nu_1 + \cos \theta_s \nu_4$

The scattering process $\rightarrow \nu s$ Fermi-Dirac distribution \rightarrow push towards oscillations between sterile and active states through a mixing angle θ_s .

$$\begin{split} \rho_{\nu}^{in} &= 3 \cdot \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} \rho_{\gamma} \,, \\ \rho_{\nu}^{fin} &= 4 \cdot \left(\frac{3}{4}\right)^{\frac{4}{3}} \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} \rho_{\gamma} \,, \end{split}$$

Entropy conservation

$$N_{eff} = 4 \cdot \left(rac{3}{4}
ight)^{rac{4}{3}} \sim 2.7 \,.$$

 2σ within Planck 2015 constraints.

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017

2D plane $\alpha_s - M_X$ for sterile neutrinos interactions. (LSS, CMB (mass), BBN, free streaming)

Here $\alpha_s \sim g_X^2/4\pi$

Red star are the best-fits (small and large values of G_X)

The white regions are allowed by current constraints.

Working with the CMB

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017 Constraints on secret interactions among sterile neutrinos from Planck 2015 data 9 / 20

<ロト <回ト < 回ト < 回ト

Method and data

Datasets

Planck 2015 cosmological data. (PlanckTT)

- Third-generation CMB ESA satellite
- $\,$ Angular resolution form 30' to 5' and sensitivity $\Delta T/T \sim 2 \cdot 10^{-6}$

Baryon Acoustic Oscillation (BAO) data. (PlanckTT+BAO)

 Geometrical information from the BAO results from the 6dF Galaxy Survey, BOSS DR11 LOWZ, CMASS samples and the Main Galaxy Sample of the Sloan Digital Sky Survey.

Investigating the parameters space (PS)

* 3 active massive neutrinos having $\sum_{
u} m_{
u} =$ 0.06eV, and 1 sterile neutrino.

ΛCDM	Standard six-parameter Λ CDM, $N_{\rm eff}$ = 3.046.
SACDM_GX0	Sterile neutrino extension, $N_{ m eff}=$ 2.7, m_s free, "small" $G_X~(\sim 10^8 G_F)$.
SACDM	Sterile neutrino extension, $N_{ m eff}=$ 2.7, m_s and G_X free.
ΛCDM_Narrow	Sterile neutrino extension, $N_{\rm eff}$ = 2.7, G_X free, m_s = 1.27 \pm 0.03 eV (gaussian prior).
ΛCDM_Broad	Sterile neutrino extension, $N_{\rm eff}$ = 2.7, G_X free, 0.93 eV $\leq m_s \leq$ 1.43 eV (flat prior).

In SACDM models $\theta_s = 0.1$

Effects on the CMB Anisotropies Power Spectrum

We use CAMB and CosmoMC. Introducing a collisional term in the Boltzmann equation.

$$\frac{\partial \Psi_i}{\partial \tau} + i \frac{q(\vec{k} \cdot \hat{n})}{\epsilon} \Psi_i + \frac{d \ln f_0}{d \ln q} \left[\dot{\eta} - \frac{\dot{h} + 6\dot{\eta}}{2} \left(\hat{k} \cdot \hat{n} \right)^2 \right] = -\Gamma_{ij} \Psi_j \,,$$

We will use the relaxation time approximation:

$$\Gamma_{ij} \sim [heta_{ij}] a G_X^2 \ T_
u^5$$

This suppresses the shear and increases the pressure in the Boltzman hierarchy.

Most relevant parameters for the considered models (PlanckTT):

Parameter	ACDM	SACDM_GX0	SACDM	ΛCDM_Broad	$S\Lambda CDM_Narrow$
$\Omega_b h^2$	0.02222 ± 0.00023	0.02177 ± 0.00024	0.02172 ± 0.00025	0.02167 ± 0.00025	$0.02166\substack{+0.00024\\-0.00024}$
$\Omega_c h^2$	0.1197 ± 0.0021	0.1167 ± 0.0022	0.1171 ± 0.0023	0.1165 ± 0.0022	0.1160 ± 0.0021
$100\theta_{MC}$	1.04085 ± 0.00047	1.04103 ± 0.00050	$1.04323^{+0.00091}_{-0.00073}$	1.04319 ± 0.00074	$1.04307\substack{+0.0010\\-0.00077}$
au	$\textbf{0.078} \pm \textbf{0.019}$	$\textbf{0.070} \pm \textbf{0.018}$	0.065 ± 0.018	0.067 ± 0.018	0.066 ± 0.018
ns	0.9655 ± 0.0061	0.9448 ± 0.0070	0.9284 ± 0.0088	$0.9191\substack{+0.0076\\-0.0078}$	$0.9161\substack{+0.0081\\-0.0072}$
$\ln(10^{10}A_s)$	$\textbf{3.089} \pm \textbf{0.036}$	$\textbf{3.063} \pm \textbf{0.035}$	3.023 ± 0.038	3.027 ± 0.037	$\textbf{3.028} \pm \textbf{0.036}$
G_X/G_F	-	10 ⁸	$< 2.8 imes 10^{10}$	$< 2.9 imes 10^{10}$	$< 4.0 imes 10^{10}$
ms	-	< 0.82	< 0.82	[0.93, 1.30]	1.27 ± 0.028
H ₀	67.31 ± 0.95	$62.2^{+2.0}_{-1.7}$	$62.6^{+1.8}_{-1.8}$	59.56 ± 0.88	$58.91\substack{+0.82\\-0.79}$

Goodness of fit:

Parameter	ΛCDM	SACDM_GX0	SACDM	SΛCDM_Broad	SACDM_Narrow
$\chi^2_{ m min}$	11265.1	11272.8	11269.0	11275.2	11277.6

Parameter	SACDM
$\Omega_b h^2$	0.02197 ± 0.00021
$\Omega_c h^2$	$0.1144\substack{+0.0016\\-0.0015}$
$100\theta_{MC}$	$1.04332\substack{+0.00090\\-0.00063}$
au	0.074 ± 0.018
ns	0.9392 ± 0.0063
$\ln(10^{10}A_s)$	$\textbf{3.038} \pm \textbf{0.036}$
G_X/G_F	$<1.97\times10^{10}$
ms	< 0.29
H ₀	65.26 ± 0.68

Constrained parameters for SACDM (PlanckTT+BAO)

イロト イポト イモト イモト 二日

Results (Constraints)

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017

- We have tested neutrino SBL anomalies with CMB data considering the existence of a Fermi-like non-standard neutrino interaction in order to avoid the increase in N_{eff} due to the thermalization of the sterile eigenstate.
- ${\scriptstyle {\rm \ensuremath{\scriptstyle \ast}}}$ The goodness of fit of the model considered, obtained using CMB data, is worse than the ΛCDM one.
- Imposing the sterile mass suggested by SBL it enlarge the H0 tension with the HST measurement and introduce a $4 5\sigma$ shift also in the n_s parameter with respect the standard ACDM value.
- Using different data the $\alpha_s M_X$ parameter space is extremely reduced. No space for sterile Fermi-like interacting neutrinos.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Thank you

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017 Constraints on secret interactions among sterile neutrinos from Planck 2015 data 17 / 20

イロト イヨト イヨト イヨト

E

Backup Slides

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017 Constraints on secret interactions among sterile neutrinos from Planck 2015 data 18 / 20

イロト イヨト イヨト イヨト

3

The interaction is implemented in the Boltzmann hierarchy, the scattering rate becomes:

$$\Gamma_{ij} = (3/2)(\zeta(3)/\pi^2) \ G_X^2 \begin{pmatrix} \sin^2\theta_s & 0 & 0 & \sin\theta_s \cos\theta_s \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \sin\theta_s \cos\theta_s & 0 & 0 & \cos^2\theta_s \end{pmatrix} T_{\nu}^5$$
(3)

Allowing scattering processes inside the sterile sector and mixing between the first and the fourth massive eigenstates.

$$\begin{split} \dot{\Psi}_{i,0} &= -\frac{qk}{\epsilon} \Psi_{i,1} + \frac{1}{6} \dot{h} \frac{d \ln f_0}{d \ln q} ,\\ \dot{\Psi}_{i,1} &= \frac{qk}{3\epsilon} \left(\Psi_{i,0} - 2\Psi_{i,2} \right) ,\\ \dot{\Psi}_{i,2} &= \frac{qk}{5\epsilon} \left(2\Psi_{i,1} - 3\Psi_{i,3} \right) - \left(\frac{1}{15} \dot{h} + \frac{2}{5} \dot{\eta} \right) \frac{d \ln f_0}{d \ln q} - \Gamma_{ij} \Psi_{j,2} ,\\ \dot{\Psi}_{i,\ell} &= \frac{qk}{(2\ell+1)\epsilon} \Big[\ell \Psi_{i,(\ell-1)} - (\ell+1) \Psi_{i,(\ell+1)} \Big] - \Gamma_{ij} \Psi_{j,\ell} \quad (\ell \ge 3) , \end{split}$$

Francesco Forastieri TeVPA, Columbus (Ohio) 8/8/2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

At early times the interaction is very strong \rightarrow tight coupling approximation:

$$egin{aligned} \dot{\Psi}_0 &= -rac{4}{3}rac{q}{\epsilon}\Psi_1 - rac{2}{3}\dot{h}\,, \ \dot{\Psi}_1 &= k^2rac{q}{\epsilon}\left(rac{1}{4}\Psi_0 - \Psi_2
ight)\,, \ \Psi_2 &= -\Gamma_x^{-1}\left[rac{2}{5}krac{q}{\epsilon}\Psi_1 + rac{2}{15}\dot{h} + rac{4}{5}\dot{\eta}
ight] \end{aligned}$$

イロト イポト イモト イモト 一日