Seeking the Sources of High-Energy Neutrinos with *Swift*

Azadeh Keivani

Penn State University

Collaborators:

Doug Cowen, James DeLaunay, Derek Fox, Jamie Kennea, Gordana Tešić, Colin Turley (*Penn State University*) Phil Evans, Julian Osborne (*University of Leicester*) Frank Marshall (*NASA GSFC*)

> **TeVPA 2017** Center for Cosmology and AstroParticle Physics The Ohio State University August 9

Swift Searches for EM counterpart to IceCube neutrinos

- *Swift* follow-up campaigns:
 - Powerful approach to search for luminous EM counterparts to high-energy cosmic neutrinos
 - Set useful constraints on associated transients
 - Use XRT and UVOT telescopes
- Under our NASA Swift Cycle 12 Guest Investigator program

Current IceCube public real-time streams

- Two high energy real-time public streams:
 - High Energy Starting Events (HESE)
 - Since April 2016
 - Six events so far
 - Only track-like
 - Extremely High Energy (EHE)
 - Since July 2016
 - Four events so far
 - Track-like

Distribute via:

- Astrophysical Multimessenger Observatory Network (AMON)
- Gamma-ray Coordinates Network (GCN)
- <u>https://gcn.gsfc.nasa.gov/amon.html</u>
- Triggered *Swift* follow-up observations of:
 - IceCube-160731A
 - IceCube-161103A
 - IceCube-170312A
 - IceCube-170321A

James DeLaunay's Talk

IceCube Event Properties

Events	Stream	Charge (p.e.)	Signalness*	R ₅₀ Rev0	R ₉₀ Rev0	R ₅₀ Rev1	R ₉₀ Rev1
IceCube-160731A	HESE/EHE	15814	0.91	0.42° (HESE) 0.17° (EHE)	1.23° (HESE)	0.35°	0.75°
IceCube-161103A	HESE	7546	0.30	0.42°	1.23°	0.65°	1.1°
IceCube-170312A	HESE	8858	0.78	0.42°	1.23°	-	< 0.5°
IceCube-170321A	EHE	6214	0.28	0.32°	-	-	1.2°

* Signalness for EHE is an estimate probability that the event is due to an astrophysical neutrino. It is called "signal_trackness" for HESE reflecting the likelihood that the neutrino being both signal-like and track-like.

Swift Observations of IceCube Events

- Priority 1 TOO
- Mosaic of 19 pointings for HESE and 7 pointings for EHE
- Automated analysis of XRT data: software at University of Leicester, Phil Evans

Events	Swift Start Obs Latency
IceCube-160731A	~ 1 hr
IceCube-161103A	~ 5 hrs
IceCube-170312A	~ 2 hrs
IceCube-170321A	~ 6 hrs

Swift Observations of IceCube-160731A

- Observations taken 3.9 to 46.5 ks after the neutrino trigger
- Covered 2.1 deg²
- Covered 64.2% of the neutrino revised r₉₀ error region
- Collected ~ 800 s per field of PC mode data per tile
- Six X-ray sources were detected
 - Known X-ray emitters
 - Catalog objects with expected X-ray emission
- Flux upper limits (0.3-10 KeV):
 - 4.3 x 10⁻¹³ erg cm⁻² s⁻¹ for a typical AGN spectrum (N_H=3 x 10²⁰ cm⁻², γ=1.7)
 - 3.1 x 10⁻¹³ erg cm⁻² s⁻¹ for overlapped areas

Swift XRT Observations

Events	Total Obs Time (ks)	Pointing Coverage (deg ²)	Neutrino Coverage (rev1 r ₉₀ error region)	Time per tile (s)	Src #	3σ flux UL (erg cm ⁻² s ⁻¹)
IceCube-160731A	42.6	2.1	64.2 %	~ 800	6	4.3 x 10 ⁻¹³
IceCube-161103A	17.7	2.1	68 %	~ 150 - 250	4	1.2 x 10 ⁻¹²
IceCube-170312A	47.6	2.1	82.3 %	~ 800	5	4.1 x 10 ⁻¹³
IceCube-170321A	14.1	0.5	22.1 %	~ 900	2	1.5 x 10 ⁻¹³

GCN circulars:

- <u>https://gcn.gsfc.nasa.gov/gcn3/19747.gcn3</u>
- <u>https://gcn.gsfc.nasa.gov/gcn3/20125.gcn3</u>
- <u>https://gcn.gsfc.nasa.gov/gcn3/20890.gcn3</u>
- https://gcn.gsfc.nasa.gov/gcn3/20964.gcn3

Swift UVOT observations

Events	Filter used	Exposure (s)	Limiting sensitivity (mag)
IceCube-160731A	U	420	18.9
IceCube-161103A	U (16 pointings) + UVW1 (3 pointings)	250	18.9
IceCube-170312A	U	110	18.9
IceCube-170321A	U	922	18.9

No transient sources were discovered in any of these searches associated with the IceCube trigger.

GRB X-ray afterglow

- A library of 192 Swift XRT light-curves
- Power-law fits
- Assume neutrino detection time to be coincident with the GRB
- Median X-ray afterglow, 80% and 50% confidence ranges
- X-ray flux limits for neutrino events averaged over all tiles of each mosaic pointing
- The flux limit: the # of source photons to yield an excess over background with p-value < 10⁻⁶ in a single source aperture
- Such excesses occur via Poisson fluctuation of the background in ~10% (4%) of 19(7)-tile observing campaigns

GRB X-ray afterglow constraints

 $P_{\Delta t,x}$ Of the X-ray afterglows of *Swift*-detected GRBs would be recovered by the follow-up campaigns, assuming the burst occurred within the FOV of the observations

10 ⁻¹¹						-
(erg cm ⁻² s ⁻¹)	•		60731A •		51103A 170321A	
u [×]						
10 ⁻¹³	4	6	8 10 Time after N	20 leutrino (ks)	40	60

Events	P⊿t,x
IceCube-160731A	65%
IceCube-161103A	30%
IceCube-170312A	55%
IceCube-170321A	43%

AGILE's Candidate γ -Ray Precursor to IceCube-160731A

- Precursor to the IceCube-160731A
- No detection in ± 1 ks of T₀
- Use AGILE-GRID Automatic Quick Look procedure over 48-hrs time bins:
 - Excess > 100 MeV
 - T_0 -1.8 < T < T_0 -0.8 days
 - Consistent with v error region
 - Post-trial significance $_{\sim}4\sigma$
 - AGL J1418+0008
- Fermi-LAT had a low exposure during the AGILE γ-ray transient
- Dedicated Swift ToO data → no X-ray counterparts
- Check Swift BAT data for possible γ -ray counterparts

arXiv:1707.08599

Conclusions and Prospects

- Four Swift follow-up campaigns so far seeking to identify transient or variable X-ray or UV/optical sources that might be associated with IceCube high-energy cosmic muon neutrinos
- Observations covered 64.2%, 68.0%, 82.3% and 22.1% of the 90% containment regions for the four neutrino events
- No compelling candidate X-ray or UV/optical counterpart for any of the events identified
- 3σ upper limits on the flux for a typical AGN spectrum placed
- 30%-65% of X-ray afterglows of *Swift*-detected GRBs would be recovered by the follow-up campaigns of these neutrinos
- A paper in preparation with upper limits considering more source scenarios: blazars and supernovae
- Plan to continue Swift follow-up observations of IceCube high-energy neutrinos at a rate of roughly four campaigns per year