

Searching for Counterparts to Cosmic Neutrinos Using the Fermi LAT Satellite

Colin Turley and the Astrophysical Multimessenger Observatory Network (AMON)

11 August 2017 TeVPA 2017

AMON

ADDON Astrophysical Multimessenger Observatory Network

- Multimessenger event: an astrophysical event seen with two or more of the four messengers (photons, neutrinos, cosmic rays, gravitational waves)
- No known sources of high-energy astrophysical neutrinos
- Many models predict correlated neutrino and gamma ray production
- Time sensitive coincident analysis can identify or limit neutrino/gamma coincidences

- FOV: 2.4 steradians (20% of full sky)
- Surveys whole sky every 3 hours
- Energy range of 100 MeV to 300 GeV
- Data concurrent with IceCube 40-string (IC40) and 59-string (IC59)
- Chance to see coincident neutrinos and gamma rays

Top: Fermi satellite Bottom: LAT detector

PENNSTATE.

Coincidence requirements: Temporal: $\Delta t = \pm 100 \text{ s}$ Spatial: $\Delta \theta < 5^{\circ}$

IC40 run: April 2008 to May 2009 Fermi begins operation in July 2008 1.3×10^4 neutrinos 1.6×10^7 photons Sky r IC59

IC59 run: May 2009 to May 2010 1.1×10^5 neutrinos 1.8×10^7 photons Sky map of fermi events concurrent with IC59 (top) and the IC59 neutrinos (bottom).

PENNSTATE.

- Arrival direction of particles is uncertain, given by Point Spread Function (PSF)
- Localize coincidence by max overlap of PSFs
- Rank coincidence by log likelihood statistic:

$$\lambda = 2\ln \frac{(P_{\gamma 1} P_{\gamma 2} \dots P_{\gamma n}) n! (P_{\nu})}{B(\vec{x})^n}$$

Higher Lambda - more significant coincidence

Top: a four particle multiplet with one neutrino (red) and three photons (blue) Bottom: overlap of the four PSFs

5

Scrambled Results

PENNSTATE.

- IC40:
 - BG 1089.7±30 events
 - Data 1128 events
- IC59:
 - BG 11056±98 events
 - Data 11143 events
- Two ways to identify a cosmic signal:
 - Look for excess high lambda events
 - Inject signal events

Cumulative histograms of lambda values for IC40 (top) and IC59 (bottom). Null distributions are in blue, signal in red.

- 1 event per 10 scrambles:
 - IC40: λ>64
 - IC59: λ>160
- 1 event per 100 scrambles:
 - IC40: λ>100
 - IC59: λ>210
- IC40 results:

$$\circ \lambda_{max} = 98.3$$

IC59 results:

 $\lambda_{max} = 118.5$

 $2.0 \frac{1e7}{1.5}$ $1.0 \frac{160}{0.5}$ $0.0 \frac{1}{50} \frac{1}{0} \frac{1}{0} \frac{1}{50} \frac{1}{100} \frac{1}{150} \frac{1}{200} \frac{1}{250} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{1$

Histogram of the null lambda values for IC59 with two thresholds shown: 1 per 10 scrambles (λ >160) and 1 per 100 scrambles (λ >210)

254 photons arising from GRB 090902426, in coincidence with a scrambled IceCube neutrino. λ =3907.7

PENNSTATE.

- Center photon and neutrino PSFs, and place all particles weighted by their psfs
- 2. Put coincidence at random sky location
- 3. Calculate lambda value
- Inject signal events into the null distribution
- Use Anderson-Darling k-sample test to test for statistical excess of signal events

Anderson Darling (AD) k-sample test statistic vs number of injected signal events for IC40 (red) and IC59 (blue).

	1% P-value	0.1% P-value
IC40	240 events	320 events
IC59	980 events	1280 events

PENNSTATE.

Results of the Signal Injecti

Results of the Anderson-Darling test shown with the residuals of different signal injections. IC40 has a p-value of 63%. IC59 has a p-value of 8%.

PENNSTATE.

- IceCube background different in north/south hemispheres
- Statistical excess only persists in northern hemisphere
- Possible causes of low-λ excess:
 - Correlation between neutrino and photon positions
 - Signal with a soft power law
 - Systematic error in IceCube PSF

Residuals shown with 1% and 0.1% signal injections for both the Northern hemisphere (top, p-value of 6%) and the Southern hemisphere (bottom, p-value of 45%)

Signal Vetting

PENNSTATE.

Signal Vetting

PENNSTATE.

Upper Plots: Histograms of photon-neutrino spatial (left) and temporal (right) separation. Background is shown in red.

Bottom Plots: Results of a chi square test for each scrambled dataset (blue histogram) plotted with a theoretical chi square distribution (5 DOF). Unscrambled results shown in black.

Colin Turley, 11 August 2017

12

PENNSTATE.

- Developed a time sensitive coincident analysis for IceCube and Fermi data
- Methods sensitive to rare high-multiplicity events, such as gamma-ray bursts
- Methods also sensitive to a population of cosmic signals
- Analysis can be extended to cover all archival Fermi and IceCube data
- Working on real time analysis code to be included in the AMON architecture

- Abbasi, R. et al. 2012, Nature, 484, 351
- Böttcher, M. 2005, ApJ, 621, 176
- Finke, J. D., Razzaque, S., & Dermer, C. D. 2010, ApJ, 712, 238
- Kadler, M. et al. 2016, ArXiv e-prints
- Keivani, A. et al. 2015, ICRC2015
- Murase, K. 2014, ArXiv.org, 1410.3680

