Search for Neutrino Emission from Fast Radio Bursts with IceCube

Donglian Xu

Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish

TeV Particle Astrophysics (TeVPA) 2017 August 7 - 11, 2017 | Columbus, Ohio

Fast Radio Bursts - Discovery in 2007

Lorimer et al., **Science** 318 (5851): 777-780

$$\Delta t_{\text{delay}} = \frac{e^2}{2\pi m_e c^3} \cdot \text{DM} \cdot w^{-2}$$
$$= 1.5 \times 10^{-24} \,\text{s} \cdot \text{DM} \cdot w^{-2}$$

$$DM = \int n_e dl = 375 \pm 1 \text{cm}^{-3} \text{pc}$$

"very compact"

"extragalactic"?

Time after UT 19:50:01.63 (ms) $\delta t_{\rm width} = 4.6\,{\rm ms}\,(\frac{\omega}{1.4{\rm GHz}})^{-4.8\pm0.4}$ $\int dt I_{\omega} \simeq 150\pm50{\rm Jy\,ms}\,@\,1.4\,{\rm GHz}$

A total of ~23 FRBs detected to date.
 Estimated FRB event rate is ~1,000/day

Fast Radio Bursts Emitting Neutrinos?

- Blitzar "Cataclysmic" [H. Falcke and L. Rezzolla, A&A 562, A137 (2014)]
- Binary neutron star merger
 [T. Totani, Pub. Astron. Soc. Jpn. 65, L12 (2013)]
- Evaporating primordial black holes

[Halzen et al., PRD 1995]

"MeV neutrinos"

Magnetar/SGRs hyperflares

[S. B. Popov and K. A. Postnov, arXiv:1307.4924]

[Halzen et al. (2005) astro-ph/0503348]

"TeV neutrinos"? → this work

Goal: detecting TeV-PeV astrophysical neutrinos Construction completed in December 2010

50 m

IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW-Madison

1450 m

Digital Optical Module (DOM)
5,160 DOMs
deployed in the ice

2450 m

(1) Track: charged current ν_{μ}

- <1° Angular resolution
- Factor ~ 2 energy resolution

- 10° Angular resolution above 100 TeV
- 15% energy resolution on deposited energy

"high degeneracy"

IceCube has detected a diffuse astrophysical neutrino flux, but **no TeV neutrino point sources** have been identified to date.

- Burst times cover IceCube data taking seasons from 2010 to 2015 (6 years)
- A total of 29 FRBs (11 unique locations).

North (DEC >= -5°)	South (DEC < -5°)
842,597 events	379,261 events
(collected from 2011-2015)	(collected from 2010-2014)
dominated by atmospheric neutrinos	dominated by atmospheric muons
A total of 1.2 million events in 6 years	

Background PDF derived from off-time data

2015 ApJ 805 L5

ApJ 845 (2017), 1, 14

The likelihood for observing N events with properties $\{x_i\}$ for $(n_s + n_b)$ expected number of events is:

$$L(N, \{x_i\}; n_s + n_b) = \frac{(n_s + n_b)^N}{N!} \cdot \exp(-(n_s + n_b)) \cdot \prod_{i=1}^N P(x_i)$$

The normalized probability of observing event i is $P(x_i)$:

$$P(x_i) = \frac{n_s S(x_i) + n_b B(x_i)}{n_s + n_b}$$

$$S_i = S_{\text{time}}(t_i) \cdot S_{\text{space}}(\vec{x}_i)$$

$$B_i = B_{\text{time}}(t_i) \cdot B_{\text{space}}(\vec{x}_i)$$

"temporal" + "spatial"

$$T := \ln \frac{L(N, \{x_i\}; n_s + n_b)}{L_0(N, \{x_i\}; n_b)}$$

$$T := -$$

$$T := -\hat{n}_s + \sum_{i=1}^{N} \ln(1 + \frac{\hat{n}_s S_i}{\langle n_b \rangle B_i})$$

Stacking "Distributed fluence test"

Max-burst

"Single bright neutrino source test"

- Model independent
- Expanding time windows centered at burst times
- ≥ 25 time windows from 10 ms to 2 days, expanding as 2ⁱx10 ms (i =0, ..., 24)

North

South

- ▶ 25 time windows from 10 ms to 2 days, expanding as $2^{i}x$ 10 ms (i =0, ..., 24)
- ► One coincident event can be discovery in the short time windows

- ▶ 25 time windows from 10 ms to 2 days, expanding as $2^{i}x$ 10 ms (i =0, ..., 24)
- ► One coincident event can be discovery in the short time windows

North Max-burst

Most significant time window:

$$\Delta T = 655.36 \, \text{s}$$

South Max-burst

Most significant time window:

$$\Delta T = 167772.16 \,\mathrm{s}$$

North Stacking

North Max-burst

South Stacking

E^{-2} sensitivity E^{-2} upper limit $E^{-2.5}$ sensitivity $E^{-2.5}$ upper limit E^{-3} sensitivity E^{-3} upper limit IceCube Preliminary $7 @ 100 \text{ TeV (GeV cm}^{-2})$ 10^0 10^{-2} 10^{-1} 10^3 10^1 10^2 10^4 10^5 ΔT (s)

South Max-burst

Results from a previous search ...

Data used is public:

http://icecube.wisc.edu/science/data/PS-IC86-2011

S. Fahey, A. Kheirandish, J. Vandenbroucke, D. Xu ApJ 845 (2017) 1, 14

- Fast radio bursts (FRBs) could emit high energy neutrinos
- A maximum likelihood analysis has been established to search for spatial and temporal coincidence between IceCube neutrinos and FRBs
- No significant correlations between IceCube neutrinos and FRBs were found in 6 years of data.
- Most stringent limits on neutrino fluence from FRBs have been set to be ~0.04 GeV cm⁻². Publication is in preparation.
- IceCube can now quickly follow up on the FRBs to be detected in the forthcoming future, adding a multimessenger window to help untangle the FRB mystery

Assume the same escape time to:

$$\Delta t = D \cdot \left| \frac{1}{c} - \frac{1}{v_{\nu}} \right| = D \cdot \left(\frac{1}{\sqrt{(1 - \frac{1}{\gamma^2})}} - 1 \right) s$$

$$\gamma = \frac{E_{\nu}}{m_{\nu}}, \ c = 1$$

$$\Delta t \simeq \frac{1}{2} \cdot D \cdot (\frac{m_{\nu}}{E_{\nu}})^2$$

$$\Delta t \simeq \frac{1}{2} \cdot (\frac{m_{\nu}}{\text{eV}})^2 \cdot (\frac{\text{MeV}}{E_{\nu}})^2 \cdot (\frac{D}{10 \,\text{kpc}})$$

For $z \simeq 0.5$, $D_{\text{light}} \simeq 2 \text{ Gpc}$

For 10 MeV neutrinos:

$$\Delta t \simeq \frac{1}{2} \cdot (\frac{1 \,\text{eV}}{\text{eV}})^2 \cdot (\frac{\text{MeV}}{10 \,\text{MeV}})^2 \cdot (\frac{2 \,\text{Gpc}}{10 \,\text{kpc}}) \simeq 1000 \,\text{s}$$

For 1 TeV neutrinos:

$$\Delta t \simeq \frac{1}{2} \cdot (\frac{1 \,\text{eV}}{\text{eV}})^2 \cdot (\frac{\text{MeV}}{1 \,\text{TeV}})^2 \cdot (\frac{2 \,\text{Gpc}}{10 \,\text{kpc}}) \simeq 1.0 \times 10^{-7} \,\text{s}$$

Photon trapped time unknown

