

Recent Results from the Telescope Array Experiment

Tareq AbuZayyad for the Telescope Array Collaboration

University of Utah

High Energy Astrophysics Institute Department of Physics and Astronomy

Telescope Array Collaboration

RU Abbasi¹, M Abe¹³, T Abu-Zayyad¹, M Allen¹, R Anderson¹, R Azuma², E Barcikowski¹, JW Belz¹, DR Bergman¹, SA Blake¹, R Cady¹, MJ Chae³, BG Cheon⁴, J Chiba⁵, M Chikawa⁶, WR Cho⁷, T Fujii⁸, M Fukushima^{8,9}, T Goto¹⁰, W Hanlon¹, Y Hayashi¹⁰, N Hayashida¹¹, K Hibino¹¹, K Honda¹², D Ikeda⁸, N Inoue¹³, T Ishii¹², R Ishimor¹², H Ito¹⁴, D Ivanov¹, CCH Jui¹, K Kadota¹⁶, F Kakimoto², O Kalashev¹⁷, K Kasahara¹⁸, H Kawai¹⁹, S Kawakami¹⁰, S Kawana¹³, K Kawata⁸, E Kido⁸, HB Kim⁴, JH Kim¹, JH Kim²⁵, S Kitamura², Y Kitamura², V Kuzmin¹⁷, YJ Kwon⁷, J Lan¹, SI Lim³, JP Lundquist¹, K Machida¹², K Martens⁹, T Matsuda²⁰, T Matsuyama¹⁰, JN Matthews¹, M Minamino¹⁰, K Mukai¹², I Myers¹, K Nagasawa¹³, S Nagataki¹⁴, T Nakamura²¹, T Nonaka⁸, A Nozato⁶, S Ogio¹⁰, J Ogura², M Ohnishi⁸, H Ohoka⁸, K Oki⁸, T Okuda²², M Ono¹⁴, A Oshima¹⁰, S Ozawa¹⁸, IH Park²³, MS Pshirkov²⁴, DC Rodriguez¹, G Rubtsov¹⁷, D Ryu²⁵, H Sagawa⁸, N Sakurai¹⁰, AL Sampson¹, LM Scott¹⁵, PD Shah¹, F Shibata¹², T Shibata⁸, H Shimodaira⁸, BK Shin⁴, JD Smith¹, P Sokolsky¹, RW Springer¹, BT Stokes¹, SR Stratton^{1,15}, TA Stroman¹, T Suzawa¹³, M Takamura⁵, M Takeda⁸, R Takeishi⁸, A Taketa²⁶, M Takita⁸, Y Tameda¹¹, H Tanaka¹⁰, K Tanaka²⁷, M Tanaka²⁰, SB Thomas¹, GB Thomson¹, P Tinyakov^{17,24}, I Tkachev¹⁷, H Tokuno², T Tomida²⁸, S Troitsky¹⁷, Y Tsunesada², K Tsutsumi², Y Uchihori²⁹, S Udo¹¹, F Urban²⁴, G Vasiloff¹, T Wong¹, R Yamane¹⁰, H Yamaoka²⁰, K Yamazaki¹⁰, J Yang³, K Yashiro⁵, Y Yoneda¹⁰, S Yoshida¹⁹, H Yoshii³⁰, R Zollinger¹, Z Zundel¹

¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, ²Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, ⁴Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, ⁴Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, ⁵Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, ⁶Department of Physics, Vinki University, Higashi Osaka, Josaka, Japan, ⁷Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, ⁶Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, ¹⁰Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, ¹¹Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, ¹²Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, ¹⁶Institute for Nuclear Research of Science and Engineering, Saitama University, Saitama, Japan, ¹⁴Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, ¹⁵Department of Physics, Tokyo City University, Setagya-ku, Tokyo, Japan, ¹⁰Institute for Nuclear Research of the Russian Academy of Science, Moscow, Russia, ¹⁶Advanced Research Institute for Science and Engineering, Waseda University, Schajya-ku, Tokyo, Japan, ¹⁰Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, ¹⁶Advanced Research Institute for Science and Engineering, Waseda University, Kochi, Kochi, Japan, ²⁰Department of Physics, Chiba University, Chiba, Chiba, Japan, ²⁰Institute of Physics, Sungkyunkwan University, Jang-angu, Suwon, Korea, ²⁴Service de Physique Theorique, University, Chiba, Chiba, Japan, ²⁰Department of Physics, Sungkyunkwan University, Jang-angu, Suwon, Korea, ²⁴Service de Physique Theorique, Universite University of Tokyo, Bunkyo-ku, Tokyo, Japan, ²⁵Depart

USA, Japan, Korea, Russia, Belgium

Telescope Array Observatory

Largest cosmic ray observatory in the Northern hemisphere.

~700 km² → \leq *land* area of New York City.

Millard County, Utah 39.30° N 112.91° W 1550 m ASL

~800 g/cm² vertical depth

The High Energy component of Telescope Array – **38 fluorescence telescopes** (9728 PMTs) at 3 telescope stations overlooking an array of **507 scintillator surface detectors** (SD) operational as of 2008.

TA Fluorescence Detectors

TALE FD Telescopes / Camera

Telescope Array Energy Spectrum Results

TA SD Spectrum (9 yrs data)

Low Energy Extension Spectrum

TALE Energy spectrum (Monocular)

Comparison with other Measurements

The H4a model is used by other groups including Ice Top. Comparison of the flux using H4a model & TALE Xmax fits checks the systematic error due to uncertainty of the true composition.

Telescope Array Composition Results

- Use hybrid or stereo to constrain geometry and know X_{max}
- Stereo also provides a redundant measurement of X_{max}

Hybrid X_{max} Measurement (MD)

Xmax Data comparison to QGSjet II-03 proton and iron models

Hybrid TA Composition – (BR/LR)

BR/LR Hybrid Composition

TA data compared to QGSJet-II.3

Neutrino Search

Results

- 0 neutrino candidates after cuts, \bar{n}_{ν} < 2.44 (90% C.L.)
- **Exposure:**
 - Geometric exposure for $\theta \in (45^\circ, 90^\circ)$: 8042 km² sr yr
 - probability to interact in the atmosphere: 1.4×10^{-5}
 - $\blacktriangleright\,$ trigger, reconstruction and quality cuts efficiency $\sim 7\%\,$
 - ξ cut efficiency: ~ 24%
 - total exposure (all flavors): $A = 1.9 \times 10^{-3} \text{ km}^2 \text{ sr yr}$
- Single flavor diffuse neutrino flux limit for E > 10¹⁸ eV: E²f_ν < 1.4 × 10⁻⁶ GeV cm⁻²s⁻¹sr⁻¹ (90% C.L.)

Results: photon flux limits

<i>E</i> ₀ , eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
γ candidates	1 0	1 0	A 0	4 0	A 2
$\bar{n} <$	3.09	3.09	3.09	3.09	6.72
A _{eff}	53	192	846	2138	4317
$ F_{\gamma} <$	0.059	0.016	0.0037	0.0014	0.0016

models from J. Alvarez-Muniz et al. EPJ Web Conf. 53, 01009 (2013)

Lightning Detection

TA Observation: "Burst" Events

- 5 year data (2008-2013)
- 10 surface detector bursts seen
 - 3 or more SD triggers,
 ∆t < 1 msec
 - Occasional $\Delta t \sim 10~\mu sec$
- "Normal" SD trigger rate < 0.01 Hz. These cannot be cosmic ray air showers.
- Found to have close time/space
 coincidence with U.S. National
 Lightning Detection Network (NLDN) activity.
- Abbasi et al. Phys. Lett. A 381 (2017).

2. Lightning Detection at Telescope Array

Figure 1: *Left:* W. Hanlon (Utah) and W. Rison (New Mexico Tech) installing VHF Lightning Mapping Array detector at TA site. *Right:* Map of Telescope Array observatory, showing 1.2 km grid of surface detectors (red circles), TALE surface detectors (yellow circles), fluorescence detector locations (green circles) and LMA detectors (blue circles).

5. Conclusion

Altogether the Telescope Array observatory has detected approximately 20 burst events in eight years of observation. In about half of these events, the surface detector observations are supplemented with lightning detector data. Measurements to date appear to be consistent with these bursts arising from downward TGFs originating in negative downward lightning leaders. In this case, these events comprise the majority of the world's downward TGF sample and establish the TA/LMA combination as a major emergent facility for high-energy atmospheric research.

Telescope Array Anisotropy Results

Anisotropy Analysis

- SD data full 9 years
- Zenith angle up to 55°, loose border cut
- Geometrical acceptance; exposure 8600 km² yr sr
- Angular resolution: better than 1.5°
- Energy resolution: 20%

Published Hotspot (5yr data)

Hotspot with 9 years data

With original 20° oversampling, spot looks larger.... Thus, scan over 15°, 20°, 25°, 30°, & 35°

With 25° oversampling, significance maximum 3σ

Binsize	15		20		25		30		35	
	Local	Global								
Year 5	5.12	3.14	5.43	3.55	5.16	3.19	4.82	2.73	4.33	2.05
Year 7	4.92	2.84	5.37	3.44	5.65	3.80	5.37	3.44	5.03	2.99
Year 9	4.42	2.06	4.72	2.50	5.06	2.96	5.01	2.91	4.66	2.41

Correlation with Large-Scale Structure (LSS)

LSS Correlation (continued)

1D Kolmogorov-Smirnov p values comparing expected flux distribution (gray map from previous page) vs. simulation: Marginally Incompatible with isotropic source simulation Compatible with LSS source simulation

CORRELATION WITH LSS

Cannot distinguish between LSS and isotropic simulations for E>10 EeV and E>40 EeV distributions

Smearing Angle in degrees

Declination Dependence of SD Spectrum

The Future of Telescope Array

TALE SD Array and NICHE

Array of 15 Cerenkov detectors are being added between northern telescope station and TALE SD array

TAx4 Project

TA SD (~3000 km²): Quadruple area

- Approved in Japan 2015
- **500** scintillator SDs

2.08 km spacing

3 yrs construction, first 173 SDs have arrived in Utah for final assembly, next 77 SD to be prepared at Akeno Obs. (U.Tokyo) 2017-08 and shipped to Utah

2 FD stations (12 HiRes Telescopes)

Approved US NSF 2016

Telescopes/electronics being prepared at Univ. Utah

Site construction underway at the northern station.

Get 19 TA-equiv years of SD data by 2020

Get 16.3 (current) TA years of hybrid data

Summary

- Telescope Array has measured the energy spectrum, composition and arrival direction of UHE cosmic rays
- The spectrum and composition of UHE cosmic rays measured by TA remain compatible with a single light component above the CR ankle (~6×10¹⁸ eV).
- We have reported a hot spot seen in the direction of Ursa Major (3σ significance). It now appears larger than we originally thought.
- TA Low Energy Extension (TALE) FD has been taking data (with an engineering SD array) and has extended the energy reach below ~10^{15.5} eV
- Full TALE SD was recently deployed and is coming on line.
- TA and TALE have measured energy spectrum between 6×10¹⁵ eV to over 10²⁰ eV with a single cross-calibrated set of detectors and have observed spectral features
- Much more data are needed! coming soon TAx4

Backup Slides

Condensed Version (with some omissions) of Highlights from The Telescope Array

John Matthews for the Telescope Array Collaboration

University of Utah

High Energy Astrophysics Institute Department of Physics and Astronomy

35th ICRC

Busan, S. Korea

17 July 2017

Experiment Present and Future

TA Low Energy Extension (TALE) Galactic to Extra-Galactic Transition

Plans submitted to public lands management and site procurement under negotiation

About 2/3 of SD sites visited in June and staked for follow-up surveys. (*eg* for cultural resources, *etc*) About 2500 km covered over 10 days by 4 teams on ATVs. Resume staking by helicopter this fall (2017) for areas where ATVs are not permitted.

Clarify the details of the Hotspot Simulated 19 TA-equiv yrs data

Single Source

Two Separated Sources

Energy Spectrum & Others

Comparison with other Measurements

Telescope Array & Pierre Auger (+16%) Spectra

Declination Dependence of SD Spectrum

Better spectral agreement between Telescope Array and Auger in the common declination band

Energy Scale Check and Resolution

Composition

MD Hybrid

Elongation: <Xmax> vs log(E) plot

"Shift Plot"

Plot ΔX_{max} required to maximize data/MC agreement (QGSJETII-03).

Standard statistical test on shifted distribution (points)

Pink, blue bands for other hadronic models 16 g/cm² systematic uncertainty

contain less muons \Rightarrow multiple SD observables affected: front curvature, Area-over-peak, # of FADC Photon search signal peaks, $\chi^2/d.o.f$. muons EM cascade EM cascade 38 -----TA Hadronyinduced mugamma indueced $\text{Log}(E^2F_y/(eV^2\;\text{km}^{-2}\;\text{yr}^{-1}\;\text{sr}^{-1}))$ 37.5 TA'13 37 36.5 $45^\circ < \theta < 60^\circ$ 36 PA 35.5 Entries Mean RMS TA data Underfile 350 35 Overflow 300 i 18 18.5 19.5 20 250 19 Log E_{min}/eV 200 150 100 Gamma MC 50 20 22 8 0.4 0.6 0.2 0.8 1.2 1A1.6 1.8 1

Photon-induced showers:

arrive younger

Neutrino search

G. Rubtsov, oral 149

No young inclined showers in the dataset \Rightarrow no neutrino candidates.

45

Anisotropy

Dots: 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

TA hotspot is found near the Ursa Major Cluster

Consistent with Fluctuation

K.S. Test shows data is consistent with fluctuation for hotspot (Poisson: average = 2.78 per year, no time variation).

BUT, inconsistent with chance excess from isotropic distribution (Poisson: average = 0.9 per year) at $\sim 2.6\sigma$

Some Example Events

Example Event

High Energy Hybrid Event

Stereo Observation

